Shishi

Kerberos 5 implementation for the GNU system
for version 0.0.8, 2 October 2003

Simon Josefsson

This manual is last updated 2 October 2003 for version 0.0.8 of Shishi.
Copyright (©) 2002, 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with the Invariant Sections
including “Criticism of Kerberos”, with the Front-Cover Texts being “A GNU
Manual,” and with the Back-Cover Texts as in (a) below. A copy of the license
is included in the section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

Table of Contents

1 Introduction................cciiiiiieeno... 1
1.1 Getting Started 1
1.2 Features and Statuscooii.. 1
1.3 OVEIVIEW ..ot 2
1.4 Cryptographic Overview 4
1.5 Supported Platforms 7
1.6 Downloading and Installing 9
1.7 Bug Reports....... ... 9
1.8 Contributing........ ... 10
2 UserManual 12
2.1 Proxiable and Proxy Tickets 14
2.2 Forwardable and Forwarded Tickets 16
3 Administration Manual 18
4 Reference Manual 20
4.1 Configuration file............. 20
4.1.1 ‘default-realm’ccuiiiiiiio... 20
4.1.2 ‘default-principal’.......................... 20
4.1.3 ‘client-kdc-etypes’, 20
4.1.4 ‘verbose’, ‘verbose-asnl’, ‘verbose-noice’,
‘verbose—crypto’. 20
4.1.5 ‘realm-KdAcC’........ ... 20
4.1.6 ‘server-realmiuiiriiiiniiiiiniin. 21
4.1.7 ‘kdc-timeout’, ‘kdc-retries’.................. 21
4.1.8 ‘stringprocess’ i, 21
4.1.9 ‘ticket-life’........... 21
4.1.10 ‘renew-life’....... 22
4.2 Parameters for shishi........... 22
4.3 Parameters for shishid 24
5 Programming Manual..................... 26
5.1 Preparation........... ... 26
5.1.1 Header....... 26
5.1.2 Initialization 26
5.1.3 Version Check........... 26
5.1.4 Building the source 27
5.1.5 Autoconftests............... 27
5.1.5.1 Autoconf test via ‘pkg-config’ 28

5.1.5.2 Standalone Autoconf test using Libtool

5.1.5.3 Standalone Autoconf test.............. 29

5.2 Initialization Functions 29
5.3 Ticket Set Functions., 32
54 AP-REQ and AP-REP Functions........................ 36
5.5 SAFE and PRIV Functions 51
5.6 Ticket Functions 60
5.7 AS Functions 67
5.8 TGS Functions.oooiiiiiii ... 71
5.9 Ticket (ASN.1) Functions............................... 76
510 AS/TGS Functions.c.oouiiiiiinniiea... 78
5.11 Authenticator Functions............................... 91
5.12 Cryptographic Functions............................... 97
5.13 Utility Functions i 117
5.14 FError Handling 120
5.14.1 Error Values 120
5.14.2 Error Functions 121
5.15 Examples. 122
5.16 Generic Security Serviceiiiiiii. 122
6 Acknowledgements 124
Appendix A Criticism of Kerberos.......... 125
Appendix B Protocol Extensions............ 126
B.1 STARTTLS protected KDC exchanges 126
B.1.1 TCP/IP transport with TLS upgrade (STARTTLS)
... 126
B.1.2 Extensible typed hole based on reserved high bit
... 127
B.1.3 STARTTLS requested by client (extension mode 1)
... 127
B.1.4 STARTTLS request accepted by server (extension
mMOde 2) ... 127
B.1.5 Proceeding after successful TLS negotiation 128
B.1.6 Proceeding after failed TLS negotiation........ 128
B.2 Telnet encryption with AES-CCM 128
B.2.1 Command Names and Codes.................. 128
B.2.2 Command Meanings.......................... 128
B.2.3 Implementation Rules 129
B.2.4 Integration with the AUTHENTICATION telnet
OPEION .« v vt 129
B.2.5 Security Considerations....................... 130
B.2.5.1 Telnet Encryption Protocol Security
Considerations. 130
B.2.5.2 AES-CCM Security Considerations. ... 130
B.2.6 Acknowledgments 131

B.3 Kerberized rsh and rlogin 131

B.3.1 Establish connection 131

B.3.2 Kerberos identification. 131

B.3.3 Kerberos authentication 132

B.3.4 Extended authentication...................... 132

B.3.5 Window size........... ..o 132

B.3.6 End of authentication 133

B.3.7 Encryption i 133

B.3.8 KCMDVO0.3........o . 134

B.3.9 MIT/Heimdal authorization................... 135

Appendix C Copying This Manual 136

C.1 GNU Free Documentation License 136
C.1.1 ADDENDUM: How to use this License for your

documents 142

Appendix D GNU GENERAL PUBLIC

LICENSE..........c0iiiiiiiiiiinnn.. 143
D.1 Preamble 143

D.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION 143
D.3 How to Apply These Terms to Your New Programs 148
Concept Indexoooiiiinnn... 149

Function and DataIndex 150

iii

Chapter 1: Introduction 1

1 Introduction

Shishi implements the Kerberos 5 network security system.

1.1 Getting Started

This manual documents the Shishi application and library programming interface. All
commands, functions and data types provided by Shishi are explained.

The reader is assumed to possess basic familiarity with network security and the Kerberos
5 security system.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features and Status

Shishi might have a couple of advantages over other packages doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License (see Appendix D [Copying], page 143).

It’s thread-safe
The library uses no global variables.

It’s internationalized
It handles non-ASCII username and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows.

Shishi is far from feature complete, it is not even a full RFC 1510 implementation
yet. However, some basic functionality is implemented. A few implemented feature are
mentioned below.

e Initial authentication (AS) from raw key or password. This step is typically used to
acquire a ticket granting ticket and, less commonly, a server ticket.

e Subsequent authentication (TGS). This step is typically used to acquire a server ticket,
by authenticating yourself using the ticket granting ticket.

e Client-Server authentication (AP). This step is used by clients and servers to prove to
each other who they are, using negotiated tickets.

e Integrity protected communication (SAFE). This step is used by clients and servers to
exchange integrity protected data with each other. The key is typically agreed on using
the Client-Server authentication step.

Chapter 1: Introduction 2

an
on

Ticket cache, supporting multiple principals and realms. As tickets have a life time of
typically several hours, they are managed in disk files. There can be multiple ticket
caches, and each ticket cache can store tickets for multiple clients (users), servers,
encryption types, etc. Functionality is provided for locating the proper ticket for every
use.

Most standard cryptographic primitives. The believed most secure algorithms are
supported (see Section 1.4 [Cryptographic Overview|, page 4).

Telnet client and server. This is used to remotely login to other machines, after au-
thenticating yourself with a ticket.

PAM module. This is used to login locally on a machine.
KDC addresses located using DNS SRV RRs.

Modularized low-level crypto interface. Currently Nettle and Libgcrypt are supported.
If you wish to add support for another low-level cryptographic library, you only have to
implement a few APIs to DES, AES, MD5, SHA1, HMAC, etc, look at ‘1ib/nettle.c’
or ‘1lib/libgcrypt.c’ as a starting pointer.

The following table summarize what the current objectives are (i.e., the todo list) and
estimate on how long it will take to implement the feature. If you like to start working
anything, please let me know so work duplication can be avoided.

Pre-authentication support (week).
Cross-realm support (week).
PKINIT (use libksba, weeks)

Finish GSSAPI support via GSSLib (weeks) Shishi will not support GSSLib natively,
but a separate project “GSSLib” is under way to produce a generic GSS implementa-
tion, and it will use Shishi to implement the Kerberos 5 mechanism.

Port to cyclone (cyclone need to mature first)

Modularize ASN.1 library so it can be replaced (days). Almost done, all ASN.1 func-
tionality is found in lib/asnl.c, although the interface is rather libtasnl centric.

KDC (initiated, weeks)

Set/Change password protocol (weeks?)
Port applications to use Shishi (indefinite)
Improve documentation

Improve internationalization

Add AP-REQ replay cache (week).

Study benefits by introducing a PA-TGS-REP. This would provide mutual authentica-
tion of the KDC in a way that is easier to analyze. Currently the mutual authentication
property is only implicit from successful decryption of the KDC-REP and the 4 byte
nonce.

GUI applet for managing tickets.

Authorization library (months?) The shishi_authorized_p() is not a good solution,
better would be to have a generic and flexible authorization library. Possibly based on
S-EXP’s in tickets? Should support non-Kerberos uses as well, of course.

Chapter 1: Introduction 3

1.3 Overview

This section describes RFC 1510 from a protocol point of view!.

Kerberos provides a means of verifying the identities of principals, (e.g., a workstation
user or a network server) on an open (unprotected) network. This is accomplished without
relying on authentication by the host operating system, without basing trust on host ad-
dresses, without requiring physical security of all the hosts on the network, and under the
assumption that packets traveling along the network can be read, modified, and inserted at
will. (Note, however, that many applications use Kerberos’ functions only upon the initia-
tion of a stream-based network connection, and assume the absence of any "hijackers" who
might subvert such a connection. Such use implicitly trusts the host addresses involved.)
Kerberos performs authentication under these conditions as a trusted third- party authen-
tication service by using conventional cryptography, i.e., shared secret key. (shared secret
key - Secret and private are often used interchangeably in the literature. In our usage, it
takes two (or more) to share a secret, thus a shared DES key is a secret key. Something is
only private when no one but its owner knows it. Thus, in public key cryptosystems, one
has a public and a private key.)

The authentication process proceeds as follows: A client sends a request to the authen-
tication server (AS) requesting "credentials" for a given server. The AS responds with
these credentials, encrypted in the client’s key. The credentials consist of 1) a "ticket" for
the server and 2) a temporary encryption key (often called a "session key"). The client
transmits the ticket (which contains the client’s identity and a copy of the session key, all
encrypted in the server’s key) to the server. The session key (now shared by the client and
server) is used to authenticate the client, and may optionally be used to authenticate the
server. It may also be used to encrypt further communication between the two parties or
to exchange a separate sub-session key to be used to encrypt further communication.

The implementation consists of one or more authentication servers running on physi-
cally secure hosts. The authentication servers maintain a database of principals (i.e., users
and servers) and their secret keys. Code libraries provide encryption and implement the
Kerberos protocol. In order to add authentication to its transactions, a typical network
application adds one or two calls to the Kerberos library, which results in the transmission
of the necessary messages to achieve authentication.

The Kerberos protocol consists of several sub-protocols (or exchanges). There are two
methods by which a client can ask a Kerberos server for credentials. In the first approach,
the client sends a cleartext request for a ticket for the desired server to the AS. The reply
is sent encrypted in the client’s secret key. Usually this request is for a ticket-granting
ticket (TGT) which can later be used with the ticket-granting server (TGS). In the second
method, the client sends a request to the TGS. The client sends the TGT to the TGS in the
same manner as if it were contacting any other application server which requires Kerberos
credentials. The reply is encrypted in the session key from the TGT.

Once obtained, credentials may be used to verify the identity of the principals in a
transaction, to ensure the integrity of messages exchanged between them, or to preserve

! The text is a lightly adapted version of the introduction section from RFC 1510 by J. Kohl and C.
Neuman, September 1993, unclear copyrights, but presumably owned by The Internet Society.

Chapter 1: Introduction 4

privacy of the messages. The application is free to choose whatever protection may be
necessary.

To verify the identities of the principals in a transaction, the client transmits the ticket
to the server. Since the ticket is sent "in the clear" (parts of it are encrypted, but this
encryption doesn’t thwart replay) and might be intercepted and reused by an attacker,
additional information is sent to prove that the message was originated by the principal to
whom the ticket was issued. This information (called the authenticator) is encrypted in the
session key, and includes a timestamp. The timestamp proves that the message was recently
generated and is not a replay. Encrypting the authenticator in the session key proves that
it was generated by a party possessing the session key. Since no one except the requesting
principal and the server know the session key (it is never sent over the network in the clear)
this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also be guaranteed
using the session key (passed in the ticket and contained in the credentials). This approach
provides detection of both replay attacks and message stream modification attacks. It is
accomplished by generating and transmitting a collision-proof checksum (elsewhere called
a hash or digest function) of the client’s message, keyed with the session key. Privacy and
integrity of the messages exchanged between principals can be secured by encrypting the
data to be passed using the session key passed in the ticket, and contained in the credentials.

1.4 Cryptographic Overview

Shishi implements several of the standard cryptographic primitives. In this section we
give the names of the supported encryption suites, and some notes about them, and their
associated checksum suite.

Statements such as “it is weak” should be read as meaning that there is no credible
security analysis of the mechanism available, and/or that should an attack be published
publicly, few people would likely be surprised. Also keep in mind that the key size mentioned
is the actual key size, not the effective key space as far as a brute force attack is concerned.

NULL

NULL is a dummy encryption suite for debugging. Encryption and decryption
are identity functions. No integrity protection. It is weak. It is associated with
the NULL checksum.

arcfour-hmac

arcfour-hmac-exp
arcfour-hmac-* are a proprietary stream cipher with 56 bit (arcfour-hmac-
exp) or 128 bit (arcfour-hmac) keys, used in a proprietary way described in an
expired IETF draft ‘draft-brezak-win2k-krb-rc4-hmac-04.txt’. Deriving
keys from passwords is supported, and is done by computing a message digest
(MD4) of a 16-bit Unicode representation of the ASCII password, with no salt.
Data is integrity protected with a keyed hash (HMAC-MD5), where the key is
derived from the base key in a creative way. It is weak. It is associated with
the arcfour-hmac-md5 checksum.

Chapter 1: Introduction 5

des—-cbc-crc
des-cbc-crc is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using the key as IV. The keys can be derived from pass-
words by an obscure application specific algorithm. Data is integrity protected
with an unkeyed but encrypted CRC32-like checksum. It is weak. It is associated
with the rsa-md5-des checksum.

des-cbc-md4
des-cbc-md4 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. Data is integrity protected with
an unkeyed but encrypted MD4 hash. It is weak. It is associated with the
rsa-md4-des checksum.

des-cbc-mdb
des-cbc-md5 is DES encryption and decryption with 56 bit keys and 8 byte
blocks in CBC mode, using a zero IV. The keys can be derived from passwords
by an obscure application specific algorithm. Data is integrity protected with
an unkeyed but encrypted MD5 hash. It is weak. It is associated with the rsa-
md5-des checksum. This is the strongest RFC 1510 interoperable encryption
mechanism.

des3-cbc-shal-kd

des3-cbc-shal-kd is DES encryption and decryption with three 56 bit keys
(effective key size 112 bits) and 8 byte blocks in CBC mode. The keys can
be derived from passwords by a algorithm based on the paper "A Better Key
Schedule For DES-like Ciphers"? by Uri Blumenthal and Steven M. Bellovin
(it is not clear if the algorithm, and the way it is used, is used by any other
protocols, although it seems unlikely). Data is integrity protected with a keyed
SHA1 hash in HMAC mode. It has no security proof, but is assumed to provide
adequate security in the sense that knowledge on how to crack it is not known
to the public. Note that the key derivation function is not widely used outside
of Kerberos, hence not widely studied. It is associated with the hmac-shal-
des3-kd checksum.

aes128-cts-hmac-shal-96

aes256-cts-hmac-shal-96
aes128-cts-hmac-shal-96 and aes256-cts-hmac-shal-96 is AES encryption
and decryption with 128 bit and 256 bit key, respectively, and 16 byte blocks in
CBC mode with Cipher Text Stealing. Cipher Text Stealing means data length
of encrypted data is preserved (pure CBC add up to 7 pad characters). The
keys can be derived from passwords with RSA Laboratories PKCS#5 Pass-
word Based Key Derivation Function 23, which is allegedly provably secure in
a random oracle model. Data is integrity protected with a keyed SHA1 hash,
in HMAC mode, truncated to 96 bits. There is no security proof, but the
schemes are assumed to provide adequate security in the sense that knowledge

2 http://www.research.att.com/~smb/papers/ides.pdf
3 http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/

Chapter 1: Introduction 6

on how to crack them is not known to the public. Note that AES has yet to
receive the test of time, and the CBC variation used is not widely standardized
(hence not widely studied). It is associated with the hmac-shal-96-aes128
and hmac-shal-96-aes256 checksums, respectively.

The protocol do not include any way to negotiate which checksum mechanisms to use,
so in most cases the associated checksum will be used. However, checksum mechanisms can
be used with other encryption mechanisms, as long as they are compatible in terms of key
format etc. Here are the names of the supported checksum mechanisms, with some notes
on their status and the compatible encryption mechanisms. They are ordered by increased
security as perceived by the author.

NULL

NULL is a dummy checksum suite for debugging. It provides no integrity. It is
weak. It is compatible with the NULL encryption mechanism.

arcfour-hmac-mdb5
arcfour-hmac-md5 is a keyed HMAC-MD5 checksum computed on a MD5 mes-
sage digest, in turn computed on a four byte message type indicator concate-
nated with the application data. (The arcfour designation is thus somewhat
misleading, but since this checksum mechanism is described in the same docu-
ment as the arcfour encryption mechanisms, it is not a completely unnatural
designation.) It is weak. It is compatible with all encryption mechanisms.

rsa-md4

rsa-md4 is a unkeyed MD4 hash computed over the message. Since it is un-
keyed, it is in general a weak checksum, however applications can, with care,
use it non-weak ways (e.g., by including the hash in other messages that are
encrypted or checksummed). It is compatible with all encryption mechanisms.

rsa-md4-des
rsa-md4-des is a DES CBC encryption of one block of random data and a
unkeyed MD4 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

rsa-md5

rsa-md5 is a unkeyed MD5 hash computed over the message. Since it is un-
keyed, it is in general a weak checksum, however applications can, with care,
use it non-weak ways (e.g., by including the hash in other messages that are
encrypted or checksummed). It is compatible with all encryption mechanisms.

rsa-mdb5-des
rsa-md5-des is a DES CBC encryption of one block of random data and a
unkeyed MD5 hash computed over the random data and the message to integrity
protect. The key used is derived from the base protocol key by XOR with a
constant. It is weak. It is compatible with the des-cbc-crc, des-cbc-md4,
des-cbc-md5 encryption mechanisms.

Chapter 1: Introduction 7

hmac-shal-des3-kd

hmac-shal-des3-kd is a keyed SHA1 hash in HMAC mode computed over
the message. The key is derived from the base protocol by the simplified key
derivation function (similar to the password key derivation functions of des3-
cbc-shal-kd). It has no security proof, but is assumed to provide good security,
if the key derivation function is good. It is compatible with the des3-cbc-shal-
kd encryption mechanism.

hmac-shal-96-aes128
hmac-shal-96-aes256

hmac-shal-96-aes* are keyed SHA1 hashes in HMAC mode computed over
the message and then truncated to 96 bits. The key is derived from the base
protocol by the simplified key derivation function (similar to the password key
derivation functions of des3-cbc-shal-kd). It has no security proof, but is
assumed to provide good security, if the key derivation function is good. It is
compatible with the aes*-cts-hmac-shal-96 encryption mechanisms.

Several of the cipher suites have long names that can be hard to memorize. For your
convenience, the following short-hand aliases exists.

arcfour

des-crc

des-md4

des-md5
des

des3
3des

aes128

aes
aes256

Alias for arcfour-hmac.

Alias for des-cbc-crc.

Alias for des-cbc-md4.

Alias for des-cbc-md>5.

Alias for des3-cbc-shal-kd.

Alias for aes128-cts-hmac-shal-96.

Alias for aes256-cts-hmac-shal-96.

1.5 Supported Platforms

Shishi

has at some point in time been tested on the following platforms.

Online build reports for each platforms and Shishi version is available at
http://josefsson.org/autobuild/.

Chapter 1: Introduction 8

10.

11.

12.

13.

14.

15.

Debian GNU /Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
armv4l-unknown-linux-gnu, hppa-unknown-linux-gnu, hppa64-unknown-linux-
gnu, 1686-pc-linux-gnu, ia64-unknown-linux-gnu, m68k-unknown-linux-gnu,
mips-unknown-linux-gnu, mipsel-unknown-linux-gnu, powerpc-unknown-linux-
gnu, s390-ibm-linux-gnu, sparc-unknown-linux-gnu, sparc64-unknown-linux-
gnu.

Debian GNU /Linux 2.1

GCC 2.95.4 and GNU Make. armv4l-unknown-linux-gnu.

Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec—
osf5.1.

SuSE Linux 7.1

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.
SuSE Linux

GCC 3.22 and GNU Make. x86_64-unknown-linux-gnu (AMD64 Opteron
“Melody”).

RedHat Linux 7.2

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

RedHat Linux 8.0

GCC 3.2 and GNU Make. 1686-pc-linux-gnu.
RedHat Advanced Server 2.1

GCC 2.96 and GNU Make. 1686-pc-1linux-gnu.
Slackware Linux 8.0.01

GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.
Mandrake Linux 9.0

GCC 3.2 and GNU Make. 1686-pc-linux-gnu.

IRIX 6.5

MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

AIX 4.3.2

IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.
HP-UX 11

HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.
SUN Solaris 2.8
Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

Chapter 1: Introduction 9

16. NetBSD 1.6

GCC 2.95.3 and GNU Make. alpha-unknown-netbsdl.6, i386-unknown-
netbsdelfl.6.

17. OpenBSD 3.1 and 3.2

GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, 1i386-unknown-
openbsd3. 1.

18. FreeBSD 4.7 and 4.8

GCC 2954 and GNU Make. alpha-unknown-freebsd4.7, alpha-unknown-
freebsd4.8, i386-unknown-freebsd4.7, 1386—unknown-freebsd4.8.

19. MacOS X 10.2 Server Edition
GCC 3.1 and GNU Make. powerpc-apple-darwin6.5.

If you use Shishi on, or port Shishi to, a new platform please report it to the author (see
Section 1.7 [Bug Reports], page 9).

1.6 Downloading and Installing

The package can be downloaded from several places, including http://josefsson.org/shishi/releases/|
The latest version is stored in a file, e.g., ‘shishi-0.0.42.tar.gz’ where the ‘0.0.42’
indicate the highest version number.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q http://josefsson.org/shishi/releases/shishi-0.0.4.tar.gz
$ tar xfz shishi-0.0.4.tar.gz

$ cd shishi-0.0.4/

$./configure

$ make
$ make install

After this you should be prepared to continue with the user, administration or program-
ming manual, depending on how you want to use Shishi.

1.7 Bug Reports

If you think you have found a bug in Shishi, please investigate it and report it.

e Please make sure that the bug is really in Shishi, and preferably also check that it
hasn’t already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

Chapter 1: Introduction 10

e You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-shishi@josefsson.org’

1.8 Contributing

If you want to submit a patch for inclusion — from solve a typo you discovered, up to
adding support for a new feature — you should submit it as a bug report (see Section 1.7
[Bug Reports|, page 9). There are some things that you can do to increase the chances for
it to be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:

e Coding Style. Follow the GNU Standards document (see (undefined) [top], page (un-
defined)).

If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see (undefined) [top]|, page (undefined))
before submitting your work.

e Use the unified diff format ‘diff -u’.

e Return errors. The only valid reason for ever aborting the execution of the program
is due to memory allocation errors, but for that you should call ‘xalloc_die’ to allow
the application to recover if it wants to.

e Design with thread safety in mind. Don’t use global variables. Don’t even write to

per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

e Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

e Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

Chapter 1: Introduction

e Supply a ChangeLog and NEWS entries, where appropriate.

11

Chapter 2: User Manual 12

2 User Manual

Usually Shishi interacts with you to get some initial authentication information like a
password, and then contacts a server to receive a so called ticket granting ticket. From
now on, you rarely interacts with Shishi directly. Applications that needs security services
instruct the Shishi library to use the ticket granting ticket to get new tickets for various
servers. An example could be if you log on to a host remotely via ‘telnet’. The host
usually requires authentication before permitting you in. The ‘telnet’ client uses the
ticket granting ticket to get a ticket for the server, and then use this ticket to authenticate
you against the server (typically the server is also authenticated to you). You perform the
initial authentication by typing shishi at the prompt. Sometimes it is necessary to supply
options telling Shishi what your principal name (user name in the Kerberos realm) or realm
is. In the example, I specify the client name simon@JOSEFSSON.ORG.

-
$ shishi simon@JOSEFSSON.ORG

Enter password for ‘simon@JOSEFSSON.ORG’:
simon@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:44:49 2003

Endtime: Fri Aug 15 05:01:29 2003

Server: krbtgt/JOSEFSSON.ORG key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: INITIAL (512)

$

-

As you can see, Shishi also prints a short description of the ticket received.

A logical next step is to display all tickets you have received (by the way, the tickets are
usually stored as text in ‘~/.shishi/tickets’). This is achieved by typing shishi --1list.

Chapter 2: User Manual 13

()
$ shishi --list
Tickets in ‘/home/jas/.shishi/tickets’:

jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:49:46 2003

Endtime: Fri Aug 15 05:06:26 2003

Server: krbtgt/JOSEFSSON.ORG key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

Ticket flags: INITIAL (512)

jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:49:46 2003
Starttime: Fri Aug 15 04:49:49 2003
Endtime: Fri Aug 15 05:06:26 2003
Server: host/latte. josefsson.org key des-cbc-md5 (3)
Ticket key: des-cbc-md5 (3) protected by des-cbc-md5 (3)

2 tickets found.

$
N J

As you can see, I had a ticket for the server ‘host/latte.josefsson.org’ which was
generated by ‘telnet’:ing to that host.

If, for some reason, you want to manually get a ticket for a specific server, you can use
the shishi --server—name command. Normally, however, the application that uses Shishi
will take care of getting a ticket for the appropriate server, so you normally wouldn’t need
this command.

(N

$ shishi --server-name=user/billg --encryption-type=des-cbc-md4
jas@JOSEFSSON.ORG:

Authtime: Fri Aug 15 04:49:46 2003

Starttime: Fri Aug 15 04:54:33 2003

Endtime: Fri Aug 15 05:06:26 2003

Server: user/billg key des-cbc-md4 (2)

Ticket key: des-cbc-md4 (2) protected by des-cbc-md5 (3)

$

= J

As you can see, [acquired a ticket for ‘user/billg’ with a ‘des-cbc-md4’ (see Section 1.4
[Cryptographic Overview], page 4) encryption key specified with the ‘--encryption-type’
parameter.

To wrap up this introduction, lets see how you can remove tickets. You may want to do
this if you leave your terminal for lunch or similar, and don’t want someone to be able to
copy the file and then use your credentials. Note that this only destroy the tickets locally,
it does not contact any server and tell it that these credentials are no longer valid. So if
someone stole your ticket file, you must contact your administrator and have them reset
your account, simply using this parameter is not sufficient.

Chapter 2: User Manual 14

(N
$ shishi --server-name=imap/latte.josefsson.org --destroy

1 ticket removed.

$ shishi --server-name=foobar --destroy

No tickets removed.

$ shishi --destroy

3 tickets removed.

$
. J

Since the ‘--server-name’ parameter takes a long to type, it is possible to type the
server name directly, after the client name. The following example demonstrate a AS-REQ
followed by a TGS-REQ for a specific server (assuming you did not have any tickets from

a1-96 (18)

the start).

(N
$ src/shishi simon@latte.josefsson.org imap/latte.josefsson.org

Enter password for ‘simon@latte.josefsson.org’:

simon@latte. josefsson.org:

Acquired: Wed Aug 27 17:21:06 2003

Expires: Wed Aug 27 17:37:46 2003

Server: imap/latte.josefsson.org key aes256-cts-hmac-shal-96 (18)
Ticket key: aes256-cts-hmac-shal-96 (18) protected by aes256-cts-hmac-sh|
Ticket flags: FORWARDED PROXIABLE (12)

$

- /)

Refer to the reference manual for all available parameters (see Section 4.2 [Parameters
for shishi], page 22). The rest of this section contains description of more specialized usage
modes that can be ignored by most users.

2.1 Proxiable and Proxy Tickets

At times it may be necessary for a principal to allow a service to perform an operation
on its behalf. The service must be able to take on the identity of the client, but only for a
particular purpose. A principal can allow a service to take on the principal’s identity for a
particular purpose by granting it a proxy.

The process of granting a proxy using the proxy and proxiable flags is used to provide
credentials for use with specific services. Though conceptually also a proxy, users wishing
to delegate their identity in a form usable for all purpose MUST use the ticket forwarding
mechanism described in the next section to forward a ticket-granting ticket.

The PROXIABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. When set, this flag tells the ticket-
granting server that it is OK to issue a new ticket (but not a ticket-granting ticket) with a
different network address based on this ticket. This flag is set if requested by the client on
initial authentication. By default, the client will request that it be set when requesting a
ticket-granting ticket, and reset when requesting any other ticket.

This flag allows a client to pass a proxy to a server to perform a remote request on its
behalf (e.g. a print service client can give the print server a proxy to access the client’s files
on a particular file server in order to satisfy a print request).

Chapter 2: User Manual 15

In order to complicate the use of stolen credentials, Kerberos tickets are usually valid
from only those network addresses specifically included in the ticket[4]. When granting a
proxy, the client MUST specify the new network address from which the proxy is to be
used, or indicate that the proxy is to be issued for use from any address.

The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket. Application
servers MAY check this flag and at their option they MAY require additional authentication
from the agent presenting the proxy in order to provide an audit trail.

Here is how you would acquire a PROXY ticket for the service ‘imap/latte.josefsson.org’:|j
(N

$ shishi jas@JOSEFSSON.ORG imap/latte.josefsson.org --proxy

Enter password for ‘jas@JOSEFSSON.ORG’:

libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:02:35 2003

Starttime: Mon Sep 8 20:02:36 2003

Endtime: Tue Sep 9 04:02:35 2003

Server: imap/latte.josefsson.org key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: PROXY (16)

$

-

As you noticed, this asked for your password. The reason is that proxy tickets must be
acquired using a proxiable ticket granting ticket, which was not present. If you often need
to get proxy tickets, you may acquire a proxiable ticket granting ticket from the start:

(M
$ shishi --proxiable

Enter password for ‘jas@JOSEFSSON.ORG’:

jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:04:27 2003

Endtime: Tue Sep 9 04:04:27 2003

Server: krbtgt/JOSEFSSON.ORG key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: PROXIABLE INITIAL (520)

- J

Then you should be able to acquire proxy tickets based on that ticket granting ticket,
as follows:

Chapter 2: User Manual 16

()
$ shishi jas@JOSEFSSON.ORG imap/latte.josefsson.org --proxy

libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:04:27 2003

Starttime: Mon Sep 8 20:04:32 2003

Endtime: Tue Sep 9 04:04:27 2003

Server: imap/latte.josefsson.org key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: PROXY (16)

$

N J

2.2 Forwardable and Forwarded Tickets

Authentication forwarding is an instance of a proxy where the service that is granted is
complete use of the client’s identity. An example where it might be used is when a user logs
in to a remote system and wants authentication to work from that system as if the login
were local.

The FORWARDABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. The FORWARDABLE flag has an inter-
pretation similar to that of the PROXIABLE flag, except ticket-granting tickets may also
be issued with different network addresses. This flag is reset by default, but users MAY
request that it be set by setting the FORWARDABLE option in the AS request when they
request their initial ticket-granting ticket.

This flag allows for authentication forwarding without requiring the user to enter a
password again. If the flag is not set, then authentication forwarding is not permitted, but
the same result can still be achieved if the user engages in the AS exchange specifying the
requested network addresses and supplies a password.

The FORWARDED flag is set by the TGS when a client presents a ticket with the
FORWARDABLE flag set and requests a forwarded ticket by specifying the FORWARDED
KDC option and supplying a set of addresses for the new ticket. It is also set in all tickets
issued based on tickets with the FORWARDED flag set. Application servers may choose to
process FORWARDED tickets differently than non-FORWARDED tickets.

If addressless tickets are forwarded from one system to another, clients SHOULD still
use this option to obtain a new TGT in order to have different session keys on the different
systems.

Here is how you would acquire a FORWARDED ticket for the service
‘host/latte.josefsson.org’:

Chapter 2: User Manual 17

(M
$ shishi jas@JOSEFSSON.ORG host/latte.josefsson.org --forwarded

Enter password for ‘jas@JOSEFSSON.ORG’:

libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:07:11 2003

Starttime: Mon Sep 8 20:07:12 2003

Endtime: Tue Sep 9 04:07:11 2003

Server: host/latte. josefsson.org key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: FORWARDED (4)

$

N\ /)

As you noticed, this asked for your password. The reason is that forwarded tickets must
be acquired using a forwardable ticket granting ticket, which was not present. If you often
need to get forwarded tickets, you may acquire a forwardable ticket granting ticket from
the start:

()

$ shishi --forwardable

Enter password for ¢jas@JOSEFSSON.ORG’:

jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:08:53 2003

Endtime: Tue Sep 9 04:08:53 2003

Server: krbtgt/JOSEFSSON.ORG key des3-cbc-shal-kd (16)

Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: FORWARDABLE INITIAL (514)

$

- J

Then you should be able to acquire forwarded tickets based on that ticket granting ticket,
as follows:
(N

$ shishi jas@JOSEFSSON.ORG host/latte.josefsson.org --forwarded
libshishi: warning: KDC bug: Reply encrypted using wrong key.
jas@JOSEFSSON.ORG:

Authtime: Mon Sep 8 20:08:53 2003

Starttime: Mon Sep 8 20:08:57 2003

Endtime: Tue Sep 9 04:08:53 2003

Server: host/latte. josefsson.org key des3-cbc-shal-kd (16)
Ticket key: des3-cbc-shal-kd (16) protected by des3-cbc-shal-kd (16)
Ticket flags: FORWARDED (4)

$

-)

Chapter 3: Administration Manual 18

3 Administration Manual

This section describe how you get the KDC server up and running to answer queries
from clients.

First you must create a user database. Currently this is rather simplistic, and
the database only contains cryptographic keys. Use the ‘shishi --string-to-key’
command to generate keys, and store them in the ‘shishid.keys’ file. The file path is
‘/usr/local/etc/shishid.keys’ by default, although you can use ‘shishid -k’ to specify
another location.

Create a random key for the Kerberos Ticket Granting Service for your realm:
(7
$ shishi --string-to-key --random \
krbtgt/latte.josefsson.org@latte. josefsson.org | \
tee /usr/local/etc/shishid.keys

Keytype: 18 (aes256-cts-hmac-shal-96)
Principal: krbtgt/latte.josefsson.org
Realm: latte.josefsson.org

oconxMTf59B5bvTylY+KE4mchA/gtmYI2Qok+48tnSM=

Create a key for a user from a specified password:
(7
$ shishi --string-to-key=fnord \
simon@latte.josefsson.org | tee --append \
/usr/local/etc/shishid.keys

Keytype: 18 (aes256-cts-hmac-shal-96)
Principal: simon
Realm: latte.josefsson.org

clrquvYwuDFrABvqWVq9bWUsQWg/xbErs IUmLN+31YM=

$
. J

There is nothing special with a ticket granting key, you could have created it based on
a password similar to the user key. However, please keep in mind that passwords typically
have little entropy.

Finally, create a random key for a service:

Chapter 3: Administration Manual 19

(7
$ shishi --string-to-key --random \

imap/latte.josefsson.org@latte. josefsson.org | \

tee --append /usr/local/etc/shishid.keys

Keytype: 18 (aes256-cts-hmac-shal-96)
Principal: imap/latte.josefsson.org
Realm: latte.josefsson.org

ts2vOQHWyWOFyXbWtCvLPqdEc60qPq5Yvat3p82rp5bc=

$
. J

You are now ready to start the KDC. Refer to the reference manual for available param-
eters (see Section 4.3 [Parameters for shishid], page 24).

[% shishid J

Then you can wuse ‘shishi’ as wusual to acquire tickets (see Chap-
ter 2 [User Manual], page 12). The following example demonstrate a
AS-REQ for ‘krbtgt/latte.josefsson.org’ followed by a TGS-REQ for
‘imap/latte.josefsson.org’.

()
$ shishi simon@latte.josefsson.org imap/latte.josefsson.org

Enter password for ‘simon@latte.josefsson.org’:

simon@latte. josefsson.org:

Acquired: Wed Aug 27 17:16:37 2003

Expires: Wed Aug 27 17:33:17 2003

Server: imap/latte. josefsson.org key aes256-cts-hmac-shal-96 (18)
Ticket key: aes256-cts-hmac-shal-96 (18) protected by aes256-cts-hmac-sh|
Ticket flags: FORWARDED PROXIABLE (12)

$

- J

a1-96 (18)]

Chapter 4: Reference Manual 20

4 Reference Manual

This chapter describes in high detail all parameters, configuration file verbs, etc.

4.1 Configuration file

The valid configuration file tokens are described here. The user configuration file is
typically located in ‘/.shishi/shishi.conf’ (compare ‘shishi --configuration-file’)
and the system configuration is typicall located in ‘/usr/local/etc/shishi.conf’. All
tokens are valid in both files, and have the same meaning. However, as the system file is
supposed to apply to all users on a system, it would not make sense to use some tokens in
both files. For example, the ‘default-principal’ is rarely useful in a system configuration
file.

4.1.1 ‘default-realm’

Specify the default realm, by default the hostname of the host is used. E.g.,
default-realm JOSEFSSON.ORG

4.1.2 ‘default-principal’

Specify the default principal, by default the login username is used. E.g.,

default-principal jas
4.1.3 ‘client-kdc-etypes’

Specify which encryption types client asks server to respond in during AS/TGS
exchanges. List valid encryption types, in preference order. Supported algorithms include
aes2b6-cts-hmac-shal-96, aesl28-cts-hmac-shal-96, des3-cbc-shal-kd, des-cbc-md5,
des-cbc-md4, des-cbe-cre and null. This option also indicates which encryption types are
accepted by the client when receiving the response. Note that the preference order is not
cryptographically protected, so a man in the middle can modify the order without being
detected. Thus, only specify encryption types you trust completely here. The default only
includes aes256-cts-hmac-shal-96, as suggested by RFC1510bis. E.g.,

client-kdc-etypes=aes256-cts-hmac-shal-96 des3-cbc-shal-kd des-cbc-mdb
4.1.4 ‘verbose’, ‘verbose-asnl’, ‘verbose-noice’, ‘verbose-crypto’
Enable verbose library messages. E.g.,

verbose
verbose-noice

Chapter 4: Reference Manual 21

4.1.5 ‘realm-kdc’

Specify KDC addresses for realms. Value is ‘REALM,KDCADDRESS [/PROTOCOL] [,KDCADDRESS [/PROTOCOL] . ..
KDCADDRESS is the hostname or IP address of KDC.

Optional PROTOCOL is udp for UDP, tcp for TCP, and TLS for TLS
connections. By default UDP is tried first, and TCP used as a fallback if the
KRB_ERR_RESPONSE_TOO_BIG error is received.

If not specified, Shishi tries to locate the KDC using SRV RRs, which is recommended.
This option should normally only be used during experiments, or to access badly maintained
realms.

realm-kdc=JOSEFSSON.ORG,ristretto. josefsson.org

4.1.6 ‘server-realm’

Specify realm for servers. Value is ‘REALM, SERVERREGEXP [, SERVERREGEXP. . .] .

SERVERREGEXP is a regular expression matching servers in the realm. The first match
is used. E.g.,

server-realm=JOSEFSSON.ORG, . josefsson.org
Note: currently not used.

4.1.7 ‘kdc-timeout’, ‘kdc-retries’

How long shishi waits for a response from a KDC before continuing to next KDC for
realm. The default is 5 seconds. E.g.,

kdc-timeout=10

How many times shishi sends a request to a KDC before giving up. The default is 3
times. E.g.,

kdc-retries=5

4.1.8 ‘stringprocess’

How username and passwords entered from the terminal, or taken from the command
line, are processed.

"none": no processing is used.

"stringprep": convert from locale charset to UTF-8 and process using experimental RFC
1510 stringprep profile.

It can also be a string indicating a character set supported by iconv via libstringprep,
in which case data is converted from locale charset into the indicated character set. E.g.,
UTF-8, ISO-8859-1, KOI-8, EBCDIC-IS-FRISS are supported on GNU systems. On some
systems you can use "locale -m" to list available character sets. By default, the "none"
setting is used which is consistent with RFC 1510 that is silent on the issue. In practice,
however, converting to UTF-8 improves interoperability.

E.g.,

stringprocess=UTF-8

Chapter 4: Reference Manual 22

4.1.9 ‘ticket-life’

Specify default ticket life time.

The string can be in almost any common format. It can contain month names, time
zones, ‘am’ and ‘pm’, ‘yesterday’, ‘ago’, ‘next’, etc. Refer to the "Date input formats"
in the GNU CoreUtils package for entire story (see section “Date input formats” in GNU
CoreUtils). As an extra feature, if the resulting string you specify has expired within the
last 24 hours, an extra day is added to it. This allows you to specify "17:00" to always
mean the next 17:00, even if your system clock happens to be 17:30.

The default is 8 hours.
E.g.,
#ticket-1life=8 hours
#ticket-life=1 day
ticket-1ife=17:00

4.1.10 ‘renew-1life’

Specify how long a renewable ticket should remain renewable.

See ticket-life for the syntax. The extra feature that handles negative values within the
last 2 hours is not active here.

The default is 7 days.
E.g.,
#renew-1life=1 week

#renew-life=friday 17:00
renew-life=sunday

4.2 Parameters for shishi

If no command is given, Shishi try to make sure you have a ticket granting ticket for the
default realm, and then display it.

Mandatory or optional arguments to long options are also mandatory or optional for any
corresponding short options.

Usage: shishi [OPTION...
or: shishi [OPTION...
or: shishi [OPTION...
or: shishi [OPTION...
or: shishi [OPTION...]

[CLIENT [SERVER]] [OPTION...]

--list [CLIENT [SERVER]]

--destroy [CLIENT [SERVER]]
--string-to-key [CLIENT] [OPTION...]

—_

Shishi -- A Kerberos 5 implementation
--client-name=NAME Client name. Default is login username.
-d, --destroy Destroy tickets in local cache, subject to
--client-name and --server-name limiting.
-e, ——endtime=STRING Specify when ticket validity should expire. Thel}

time syntax may be relative (to the start time),|]

Chapter 4: Reference Manual

23

such as "20 hours", or absolute, such as
"2001-02-03 04:05:06 CET". The default is 8 hoursll
after the start time.

-E, -—encryption-type=ETYPE, [ETYPE...]

—--force-as
--force-tgs
—--forwardable

—-—forwarded
-1, --list

—--proxiable

—-proxy
—--realm=REALM

-—-renew-till=STRING

—--renewable
-R, --renew

Encryption types to use. ETYPE is either
registered name or integer.

Force AS mode. Default is to use TGS iff a TGT isMl
found.

Force TGS mode. Default is to use TGS iff a TGT is]j
found.

Get a forwardable ticket, i.e., one that can bell
used to get forwarded tickets.

Get a forwarded ticket.

List tickets in local cache, subject to
--server-name limiting.

Get a proxiable ticket, i.e., one that can be usedj]
to get proxy tickets.

Get a proxy ticket.

Realm of server. Default is DNS domain of localll
host. For AS, this also indicates realm of client.l}
Specify renewable life of ticket. Implies
--renewable. Accepts same time syntax as
--endtime. If --renewable is specified, thel]
default is 1 week after the start time.

Get a renewable ticket.

Renew ticket. Use --server-name to specify

ticket, default is the most recent renewablel]
ticket granting ticket for the default realm.|j

--server=[FAMILY:]ADDRESS:SERVICE/TYPE

—--server—-name=NAME

-8, —--starttime=STRING

--ticket-granter=NAME

Send all requests to HOST instead of using normall}
logic to locate KDC addresses (discouraged) .|}
Server name. Default is "krbtgt/REALM" where REALMJ]
is server realm (see --realm).

Specify when ticket should start to be valid.J]
Accepts same time syntax as --endtime. The default|]
is to become valid immediately.

Service name in ticket to use for authenticating]i
request. Only for TGS. Defaults to
"krbtgt/REALMOREALM" where REALM is server realmf]
(see --realm).

Options for low-level cryptography (CRYPTO-OPTIONS):

--client-name=NAME
--key-version=INTEGER
—--parameter=STRING

—--random

Username. Default is login name.

Version number of key. Default is O.

String-to-key parameter. This data is specific forf}
each encryption algorithm and rarely needed.|]
Generate key from random data.

Chapter 4: Reference Manual 24

--realm=REALM Realm of principal. Defaults to DNS domain off}
local host.

--salt=SALT Salt to use for --string-to-key. Defaults tof}
concatenation of realm and (unwrapped) client]]
name.

--string-to-key[=[PASSWORD]]
Convert password into Kerberos key. Note that]]
—--client-name, —--realm, and --salt influence thel}
generated key.

Other options:
--configuration-file=FILE Read user configuration from file. Default]]
is 7/.shishi/config.
-c, ——ticket-file=FILE Read tickets from FILE. Default is
$HOME/ . shishi/tickets.
-0, ——library-options=STRING Parse STRING as a configuration file
statement.
-q, ——quiet, --silent Don’t produce any output.
--system-configuration-file=FILE
Read system wide configuration from file. Defaultf
is /usr/local/etc/shishi.conf.
-—ticket-write-file=FILE Write tickets to FILE. Default is to writell
them back to ticket file.

-v, —-verbose Produce verbose output. Use multiple times to]j
increase amount of verbose output.
CLIENT Set client name and realm from NAME. The

--client-name and --realm parameters can be used]]
to override part of NAME.

SERVER Set server name and realm from NAME. The
--server—-name and --server-realm parameters can bel}
used to override part of SERVER.

-7, —~help Give this help list
--usage Give a short usage message
-V, --version Print program version

4.3 Parameters for shishid

If no parameters are specified, ‘shishid’ listens on the defaults interfaces and answers
incoming requests using the keys in the default key file.

Mandatory or optional arguments to long options are also mandatory or optional for any
corresponding short options.

-c, ——configuration-file=FILE Read configuration from file. Default isfj
/usr/local/etc/shishi.conf.
-k, ——key-file=FILE Read keys from file. Default is

/usr/local/etc/shishid.keys.

Chapter 4: Reference Manual

25

-1, --listen=[FAMILY:]ADDRESS:SERVICE/TYPE,...

-q,
-u,

-s, —--quiet, --silent
-—-setuid=NAME
—-verbose

--help

--usage

--version

What to listen on. Family is "IPv4" or "IPve", iff}
absent the family is decided by

gethostbyname (ADDRESS) . An address of "x"
indicates all addresses on the local host. Thell
default is "IPv4:*:kerberos/udp,
IPv4:*:kerberos/tcp, IPv6:*:kerberos/udp,
IPv6:*:kerberos/tcp".

Don’t produce any output.

After binding socket, set user identity.
Produce verbose output.

Give this help list

Give a short usage message

Print program version

Chapter 5: Programming Manual 26

5 Programming Manual

This chapter describes all the publicly available functions in the library.

5.1 Preparation

To use ‘Libshishi’, you have to perform some changes to your sources and the build
system. The necessary changes are small and explained in the following sections. At the
end of this chapter, it is described how the library is initialized, and how the requirements
of the library are verified.

A faster way to find out how to adapt your application for use with ‘Libshishi’ may be
to look at the examples at the end of this manual (see Section 5.15 [Examples|, page 122).

5.1.1 Header

All interfaces (data types and functions) of the library are defined in the header file
‘shishi.h’. You must include this in all programs using the library, either directly or through
some other header file, like this:

#include <shishi.h>

The name space of ‘Libshishi’ is shishi_* for function names, Shishi* for data types
and SHISHI_x* for other symbols. In addition the same name prefixes with one prepended
underscore are reserved for internal use and should never be used by an application.

5.1.2 Initialization

‘Libshishi’ must be initialized before it can be used. The library is initialized by calling
shishi_init (see Section 5.2 [Initialization Functions|, page 29). The resources allocated
by the initialization process can be released if the application no longer has a need to call
‘Libshishi’ functions, this is done by calling shishi_done.

In order to take advantage of the internationalisation features in ‘Libshishi’, such as
translated error messages, the application must set the current locale using setlocale
before initializing ‘Libshishi’.

5.1.3 Version Check

It is often desirable to check that the version of ‘Libshishi’ used is indeed one which fits
all requirements. Even with binary compatibility new features may have been introduced
but due to problem with the dynamic linker an old version is actually used. So you may
want to check that the version is okay right after program startup.

const char * shishi_check_version (const char * req_version) [Function]
req_version: version string to compare with, or NULL

Check that the the version of the library is at minimum the one given as a string in
req_version.

Chapter 5: Programming Manual 27

the actual version string of the library; NULL if the condition is not met. If NULL
is passed to this function no check is done and only the version string is returned.
It is a pretty good idea to run this function as soon as possible, because it may also
intializes some subsystems. In a multithreaded environment if should be called before
any more threads are created.

The normal way to use the function is to put something similar to the following early in
your main:

if (!shishi_check_version (SHISHI_VERSION))
{
printf ("shishi_check_version failed:\n"
"Header file incompatible with shared library.\n");
exit(1);
}

5.1.4 Building the source

If you want to compile a source file including the ‘shishi.h’ header file, you must make
sure that the compiler can find it in the directory hierarchy. This is accomplished by adding
the path to the directory in which the header file is located to the compilers include file
search path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, ‘Libshishi’ uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
shishi. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config shishi --cflags®
Adding the output of ‘pkg-config shishi --cflags’ to the compilers command line
will ensure that the compiler can find the ‘Libshishi’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘~L’ option). For this, the option ‘--1ibs’ to pkg-config
shishi can be used. For convenience, this option also outputs all other options that are
required to link the program with the ‘Libshishi’ libararies (in particular, the ‘~1shishi’
option). The example shows how to link ‘foo.o’ with the ‘Libshishi’ library to a program
foo.

gcc —o foo foo.o ‘pkg-config shishi --1ibs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:
gcc -o foo foo.c ‘pkg-config shishi --cflags --libs®

5.1.5 Autoconf tests

If you work on a project that uses Autoconf (see (undefined) [top], page (undefined))
to help find installed libraries, the suggestions in the previous section are not the entire

Chapter 5: Programming Manual 28

story. There are a few methods to detect and incorporate Shishi into your Autoconf based
package. The preferred approach, is to use Libtool in your project, and use the normal
Autoconf header file and library tests.

5.1.5.1 Autoconf test via ‘pkg-config’

If your audience is a typical GNU /Linux desktop, you can often assume they have the
‘pkg-config’ tool installed, in which you can use its Autoconf M4 macro to find and set
up your package for use with Shishi. The following illustrate this scenario.

AC_ARG_ENABLE (kerberos_vb5,
AC_HELP_STRING([--disable-kerberos_v5],

[don’t use the KERBEROS_V5 mechanism]),
kerberos_v5=$enableval)
if test "$kerberos_v5" != "no" ; then
PKG_CHECK_MODULES (SHISHI, shishi >= 0.0.0,
[kerberos_vb=yes],

[kerberos_v5=no])
if test "$kerberos_vb" != "yes" ; then
kerberos_vb=no
AC_MSG_WARN([shishi not found, disabling Kerberos 5])
else
kerberos_vb=yes
AC_DEFINE (USE_KERBEROS_V5, 1,

[Define to 1 if you want Kerberos 5.])

fi
fi
AC_MSG_CHECKING([if Kerberos 5 should be used])
AC_MSG_RESULT ($kerberos_v5)

5.1.5.2 Standalone Autoconf test using Libtool

If your package uses Libtool(see (undefined) [top], page (undefined)), you can use the
normal Autoconf tests to find the Shishi library and rely on the Libtool dependency tracking
to include the proper dependency libraries (e.g., Libidn). The following illustrate this
scenario.

AC_CHECK_HEADER (shishi.h,
AC_CHECK_LIB(shishi, shishi_check_version,
[kerberosb=yes AC_SUBST(SHISHI_LIBS, -1lshishi)],
kerberos5=no),
kerberos5=no)
AC_ARG_ENABLE (kerberosb,
AC_HELP_STRING([--disable-kerberos5],

[disable Kerberos 5 unconditionallyl),
kerberos5=$enableval)
if test "$kerberos5" != "no" ; then
AC_DEFINE(USE_KERBEROS_V5, 1,

Chapter 5: Programming Manual 29

[Define to 1 if you want Kerberos 5.])
else
AC_MSG_WARN([Shishi not found, disabling Kerberos 5])
fi
AC_MSG_CHECKING([if Kerberos 5 should be used])
AC_MSG_RESULT ($kerberos5)

5.1.5.3 Standalone Autoconf test

If your package does not use Libtool, as well as detecting the Shishi library as in the
previous case, you must also detect whatever dependencies Shishi requires to work (e.g.,
libidn). Since the dependencies are in a state of flux, we do not provide an example and we
do not recommend this approach, unless you are experienced developer.

5.2 Initialization Functions

Shishi * shishi (void) [Function]
Initializes the Shishi library, and set up, using shishi_set_outputtype (), the library
so that future warnings and informational messages are printed to stderr. If this
function fails, it may print diagnostic errors to stderr.

Returns Shishi library handle, or NULL on error.

Shishi * shishi_server (void) [Function]
Initializes the Shishi library, and set up, using shishi_set_outputtype (), the library
so that future warnings and informational messages are printed to the syslog. If this
function fails, it may print diagnostic errors to the syslog.

Returns Shishi library handle, or NULL on error.

void shishi_done (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init ().

Deallocates the shishi library handle. The handle must not be used in any calls to
shishi functions after this.

If there is a default tkts, it is written to the default tkts file (call shishi_tkts_
default_file_set () to change the default tkts file). If you do not wish to write the
default tkts file, close the default tkts with shishi_tkts_done(handle, NULL) before
calling this function.

int shishi_init (Shishi ** handle) [Function]
handle: pointer to handle to be created.

Create a Shishi library handle, using shishi(), and read the system configuration
file, user configuration file and user tickets from their default locations. The
paths to the system configuration file is decided at compile time, and is
$sysconfdir /shishi.conf. The user configuration file is $HOME/.shishi/config, and
the user ticket file is SHOME/.shishi/ticket.

The handle is allocated regardless of return values, except for SHISHI_ HANDLE_ERRORJ
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Chapter 5: Programming Manual 30

Returns SHISHI_OK iff successful.

int shishi_init_with_paths (Shishi ** handle, const char * [Function]
tktsfile, const char * systemcfgfile, const char * usercfgfile)
handle: pointer to handle to be created.

tktsfile: Filename of ticket file, or NULL.
systemcfgfile: Filename of system configuration, or NULL.
usercfgfile: Filename of user configuration, or NULL.

Create a Shishi library handle, using shishi(), and read the system configuration
file, user configuration file, and user tickets from the specified locations. If any

of usercfgfile or systemcfgfile is NULL, the file is read from its default lo-
cation, which for the system configuration file is decided at compile time, and is
$sysconfdir /shishi.conf, and for the user configuration file is $HOME/.shishi/config.

If the ticket file is NULL, a ticket file is not read at all.

The handle is allocated regardless of return values, except for SHISHI_HANDLE_ERRORJ]
which indicates a problem allocating the handle. (The other error conditions comes
from reading the files.)

Returns SHISHI_OK iff successful.

int shishi_init_server (Shishi ** handle) [Function]
handle: pointer to handle to be created.
Create a Shishi library handle, using shishi_server (), and read the system config-
uration file. The paths to the system configuration file is decided at compile time,
and is $sysconfdir /shishi.conf.
The handle is allocated regardless of return values, except for SHISHI_HANDLE_ERRORJ]
which indicates a problem allocating the handle. (The other error conditions comes
from reading the file.)

Returns SHISHI_OK iff successful.

int shishi_init_server_with_paths (Shishi ** handle, const char [Function]
* systemcfgfile)

handle: pointer to handle to be created.
systemcfgfile: Filename of system configuration, or NULL.
Create a Shishi library handle, using shishi_server (), and read the system con-
figuration file from specified location. The paths to the system configuration file is
decided at compile time, and is $sysconfdir/shishi.conf. The handle is allocated re-
gardless of return values, except for SHISHI_ HANDLE_ERROR which indicates a

problem allocating the handle. (The other error conditions comes from reading the
file.)

Returns SHISHI_OK iff successful.

int shishi_cfg (Shishi * handle, char * option) [Function]
handle: Shishi library handle create by shishi_init().

option: string with shishi library option.
Configure shishi library with given option.
Returns SHISHI_OK if option was valid.

Chapter 5: Programming Manual

int shishi_cfg_from_file (Shishi * handle, const char * cfg)
handle: Shishi library handle create by shishi_init().

cfg: filename to read configuration from.

Configure shishi library using configuration file.
Returns SHISHI_OK iff succesful.

int shishi_cfg_print (Shishi * handle, FILE * fh)
handle: Shishi library handle create by shishi_init().

fh: file descriptor opened for writing.

Print library configuration status, mostly for debugging purposes.
Returns SHISHI_OK.

const char * shishi_cfg_default_systemfile (Shishi * handle)
handle: Shishi library handle create by shishi_init().

Return system configuration filename.

const char * shishi_cfg_default_userdirectory (Shishi * handle)

handle: Shishi library handle create by shishi_init().

Return directory with configuration files etc.

const char * shishi_cfg_default_userfile (Shishi * handle)
handle: Shishi library handle create by shishi_init ().

Return user configuration filename.

int shishi_cfg_clientkdcetype (Shishi * handle, int32_t *x*

etypes)
handle: Shishi library handle create by shishi_init ().

etypes: output array with encryption types.
Set the etypes variable to the array of preferred client etypes.

Return the number of encryption types in the array, 0 means none.

int shishi_cfg_clientkdcetype_set (Shishi * handle, char *
value)
handle: Shishi library handle create by shishi_init().

value: string with encryption types.

31

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Set the "client-kdc-etypes" configuration option from given string. The string con-
tains encryption types (integer or names) separated by comma or whitespace, e.g.

"aes256-cts-hmac-shal-96 des3-cbe-shal-kd des-cbe-mdb™".
Return SHISHI_OK iff successful.

int shishi_cfg_authorizationtype_set (Shishi * handle, char *
value)
handle: Shishi library handle create by shishi_init().

value: string with authorization types.

[Function]

Chapter 5: Programming Manual 32

Set the "authorization-types" configuration option from given string. The string
contains authorization types (integer or names) separated by comma or whitespace,
e.g. "basic kblogin".

Return SHISHI_OK iff successful.

5.3 Ticket Set Functions

A “ticket set” is, as the name implies, a collection of tickets. Functions are provided to
read tickets from file into a ticket set, to query number of tickets in the set, to extract a
given ticket from the set, to search the ticket set for tickets matching certain criterium, to
write the ticket set to a file, etc. High level functions for performing a initial authentication
(see Section 5.7 [AS Functions|, page 67) or subsequent authentication (see Section 5.8 [TGS
Functions], page 72) and storing the new ticket in the ticket set are also provided.

To manipulate each individual ticket, See Section 5.6 [Ticket Functions|, page 60. For
low-level ASN.1 manipulation see See Section 5.9 [Ticket (ASN.1) Functions|, page 76.

char * shishi_tkts_default_file_guess (void) [Function]
Guesses the default ticket filename; it is SHOME/ .shishi/tickets.

Returns default tkts filename as a string that has to be deallocated with free() by
the caller.

const char * shishi_tkts_default_file (Shishi * handle) [Function]
handle: Shishi library handle create by shishi_init ().

Returns the default ticket set filename used in the library. (Not a copy of it, so don’t
modify or deallocate it.)

void shishi_tkts_default_file_set (Shishi * handle, const char * [Function]
tktsfile)
handle: Shishi library handle create by shishi_init().

tktsfile: string with new default tkts file name, or NULL to reset to default.

Set the default ticket set filename used in the library. The string is copied into the
library, so you can dispose of the variable immediately after calling this function.

Shishi_tkts * shishi_tkts_default (Shishi * handle) [Function]
handle: Shishi library handle create by shishi_init().

Return the handle global ticket set.

int shishi_tkts (Shishi * handle, Shishi_tkts ** tkts) [Function]
handle: shishi handle as allocated by shishi_init ().

tkts: output pointer to newly allocated tkts handle.
Returns SHISHI_OK iff successful.

void shishi_tkts_done (Shishi_tkts ** tkts) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

Deallocates all resources associated with ticket set. The ticket set handle must not
be used in calls to other shishi_tkts_*() functions after this.

Chapter 5: Programming Manual 33

int shishi_tkts_size (Shishi_tkts * tkts) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

Returns number of tickets stored in ticket set.

Shishi_tkt * shishi_tkts_nth (Shishi_tkts * tkts, int ticketno) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

ticketno: integer indicating requested ticket in ticket set.

Returns a ticket handle to the ticketno:th ticket in the ticket set, or NULL if ticket
set is invalid or ticketno is out of bounds. The first ticket is ticketno 0, the second
ticketno 1, and so on.

int shishi_tkts_remove (Shishi_tkts * tkts, int ticketno) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

ticketno: ticket number of ticket in the set to remove. The first ticket is ticket number
0.

Returns SHISHI_OK if succesful or if ticketno larger than size of ticket set.

int shishi_tkts_add (Shishi_tkts * tkts, Shishi_tkt * tkt) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

tkt: ticket to be added to ticket set.
Returns SHISHI_OK iff succesful.

int shishi_tkts_new (Shishi_tkts * tkts, Shishi_asnl ticket, [Function]
Shishi_asnl enckdcreppart, Shishi_asnl kdcrep)
tkts: ticket set handle as allocated by shishi_tkts().

ticket: input ticket variable.

enckdcreppart: input ticket detail variable.
kdcrep: input KDC-REP variable.

Allocate a new ticket and add it to the ticket set.
Returns SHISHI_OK iff succesful.

int shishi_tkts_read (Shishi_tkts * tkts, FILE * fh) [Function]
tkts: ticket set handle as allocated by shishi_tkts().

fth: file descriptor to read from.
Read tickets from file descriptor and add them to the ticket set.
Returns SHISHI_OK iff succesful.

int shishi_tkts_from_file (Shishi_tkts * tkts, const char * [Function]
filename)
tkts: ticket set handle as allocated by shishi_tkts().

filename: filename to read tickets from.
Read tickets from file and add them to the ticket set.
Returns SHISHI_OK iff succesful.

Chapter 5: Programming Manual

int shishi_tkts_write (Shishi_tkts * tkts, FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().

fh: file descriptor to write tickets to.

Write tickets in set to file descriptor.
Returns SHISHI_OK iff succesful.

int shishi_tkts_expire (Shishi_tkts * tkts)
tkts: ticket set handle as allocated by shishi_tkts().

Remove expired tickets from ticket set.
Returns SHISHI_OK iff succesful.

int shishi_tkts_to_file (Shishi_tkts * tkts, const char * filename)

tkts: ticket set handle as allocated by shishi_tkts().
filename: filename to write tickets to.

Write tickets in set to file.

Returns SHISHI_OK iff succesful.

int shishi_tkts_print_for_service (Shishi_tkts * tkts, FILE * fh,
const char * service)
tkts: ticket set handle as allocated by shishi_tkts().

fth: file descriptor to print to.

service: service to limit tickets printed to, or NULL.

34

[Function]

[Function]

[Function]

[Function]

Print description of tickets for specified service to file descriptor. If service is NULL,

all tickets are printed.
Returns SHISHI_OK iff succesful.

int shishi_tkts_print (Shishi_tkts * tkts, FILE * fh)
tkts: ticket set handle as allocated by shishi_tkts().

th: file descriptor to print to.
Print description of all tickets to file descriptor.
Returns SHISHI_OK iff succesful.

int shishi_tkt_match_p (Shishi_tkt * tkt, Shishi_tkts_hint *
hint)
tkt: ticket to test hints on.
hint: structure with characteristics of ticket to be found.

Returns 0 iff ticket fails to match given criteria.
Shishi_tkt * shishi_tkts_find (Shishi_tkts * tkts,

Shishi_tkts_hint * hint)
tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to be found.

[Function]

[Function]

[Function]

Chapter 5: Programming Manual 35

Search the ticketset sequentially (from ticket number O through all tickets in the
set) for a ticket that fits the given characteristics. If a ticket is found, the hint-
>startpos field is updated to point to the next ticket in the set, so this function can
be called repeatedly with the same hint argument in order to find all tickets matching
a certain criterium. Note that if tickets are added to, or removed from, the ticketset
during a query with the same hint argument, the hint->startpos field must be updated
appropriately.

Shishi_tkts_hint hint;

Shishi_tkt tkt;

memset(hint, 0, sizeof(hint));

hint.server = "imap/mail.example.org";

tkt = shishi_tkts_find (shishi_tkts_default(handle), hint);

if (1tkt)

printf("No ticket found...\n");

else

...do something with ticket

Returns a ticket if found, or NULL if no further matching tickets could be found.

Shishi_tkt * shishi_tkts_find_for_clientserver (Shishi_tkts * [Function]
tkts, const char * client, const char * server)
tkts: ticket set handle as allocated by shishi_tkts().

client: client name to find ticket for.
server: server name to find ticket for.

Short-hand function for searching the ticket set for a ticket for the given client and
server. See shishi_tkts_find().

Returns a ticket if found, or NULL.

Shishi_tkt * shishi_tkts_find_for_server (Shishi_tkts * tkts, [Function]
const char * server)

tkts: ticket set handle as allocated by shishi_tkts().
server: server name to find ticket for.
Short-hand function for searching the ticket set for a ticket for the given server us-
ing the default client principal. See shishi_tkts_find_for_clientserver() and
shishi_tkts_find ().
Returns a ticket if found, or NULL.

Shishi_tkt * shishi_tkts_get_tgt (Shishi_tkts * tkts, [Function]
Shishi_tkts_hint * hint)
tkts: ticket set handle as allocated by shishi_tkts().
hint: structure with characteristics of ticket to begot.

Get a ticket granting ticket (TGT) suitable for acquiring ticket matching the hint.
Le., get a TGT for the server realm in the hint structure (hint->serverrealm), or the
default realm if the serverrealm field is NULL. Can result in AS exchange.

Chapter 5: Programming Manual 36

Currently this function do not implement cross realm logic.

This function is used by shishi_tkts_get (), which is probably what you really want
to use unless you have special needs.

Returns a ticket granting ticket if successful, or NULL if this function is unable to
acquire on.

Shishi_tkt * shishi_tkts_get_tgs (Shishi_tkts * tkts, [Function]
Shishi_tkts_hint * hint, Shishi_tkt * tgt)
tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to begot.
tgt: ticket granting ticket to use.
Get a ticket via TGS exchange using specified ticket granting ticket.

This function is used by shishi_tkts_get (), which is probably what you really want
to use unless you have special needs.

Returns a ticket if successful, or NULL if this function is unable to acquire on.

Shishi_tkt * shishi_tkts_get (Shishi_tkts * tkts, [Function]
Shishi_tkts_hint * hint)
tkts: ticket set handle as allocated by shishi_tkts().

hint: structure with characteristics of ticket to begot.

Get a ticket matching given characteristics. This function first looks in the ticket
set for the ticket, then tries to find a suitable TGT, possibly via an AS exchange,
using shishi_tkts_get_tgt (), and then use that TGT in a TGS exchange to get
the ticket.

Currently this function do not implement cross realm logic.
Returns a ticket if found, or NULL if this function is unable to get the ticket.

Shishi_tkt * shishi_tkts_get_for_clientserver (Shishi_tkts * [Function]
tkts, const char * client, const char * server)
tkts: ticket set handle as allocated by shishi_tkts().

client: client name to get ticket for.
server: server name to get ticket for.

Short-hand function for getting a ticket for the given client and server. See shishi_
tkts_get ().

Returns a ticket if found, or NULL.

Shishi_tkt * shishi_tkts_get_for_server (Shishi_tkts * tkts, [Function]
const char * server)
tkts: ticket set handle as allocated by shishi_tkts().

server: server name to get ticket for.

Short-hand function for getting a ticket for the given server and the default principal
client. See shishi_tkts_get().

Returns a ticket if found, or NULL.

Chapter 5: Programming Manual 37

5.4 AP-REQ and AP-REP Functions

The “AP-REQ” and “AP-REP” are ASN.1 structures used by application client and
servers to prove to each other who they are. The structures contain auxilliary information,
together with an authenticator (see Section 5.11 [Authenticator Functions|, page 91) which
is the real cryptographic proof. The following illustrates the AP-REQ and AP-REP ASN.1
structures.

AP-REQ ::= [APPLICATION 14] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (14),
ap-options [2] APOptions,
ticket [3] Ticket,

authenticator [4] EncryptedData {Authenticator,
{ keyuse-pa-TGSReg-authenticator
| keyuse-APReq-authenticator }}

AP-REP : [APPLICATION 15] SEQUENCE {

pvno [0] INTEGER (5),

msg-type [1] INTEGER (15),

enc-part [2] EncryptedData {EncAPRepPart,

{ keyuse-EncAPRepPart 1}}

EncAPRepPart [APPLICATION 27] SEQUENCE {
ctime [0] KerberosTime,
cusec [1] Microseconds,
subkey [2] EncryptionKey OPTIONAL,
seq-number [3] UInt32 OPTIONAL

}

int shishi_ap (Shishi * handle, Shishi_ap ** ap) [Function]
handle: shishi handle as allocated by shishi_init ().

ap: pointer to new structure that holds information about AP exchange

Create a new AP exchange.
Returns SHISHI_OK iff successful.

int shishi_ap_nosubkey (Shishi * handle, Shishi_ap ** ap) [Function]
handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange

Create a new AP exchange without subkey in authenticator.
Returns SHISHI_OK iff successful.

void shishi_ap_done (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Deallocate resources associated with AP exchange. This should be called by the
application when it no longer need to utilize the AP exchange handle.

Chapter 5: Programming Manual 38

int shishi_ap_set_tktoptions (Shishi_ap * ap, Shishi_tkt * tkt, [Function]
int options)
ap: structure that holds information about AP exchange
tkt: ticket to set in AP.
options: AP-REQ options to set in AP.
Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()).
Returns SHISHI_OK iff successful.

int shishi_ap_set_tktoptionsdata (Shishi_ap * ap, Shishi_tkt * [Function]
tkt, int options, const char * data, size_t len)
ap: structure that holds information about AP exchange

tkt: ticket to set in AP.

options: AP-REQ options to set in AP.

data: input array with data to checksum in Authenticator.

len: length of input array with data to checksum in Authenticator.

Set the ticket (see shishi_ap_tkt_set()) and set the AP-REQ apoptions (see
shishi_apreq_options_set()) and set the Authenticator checksum data.

Returns SHISHI_OK iff successful.

int shishi_ap_set_tktoptionsasnlusage (Shishi_ap * ap, [Function]
Shishi_tkt * tkt, int options, Shishi_asnl node, char * field, int
authenticatorcksumkeyusage, int authenticatorkeyusage)
ap: structure that holds information about AP exchange

tkt: ticket to set in AP.

options: AP-REQ options to set in AP.

node: input ASN.1 structure to store as authenticator checksum data.
field: field in ASN.1 structure to use.

authenticatorcksumkeyusage: key usage for checksum in authenticator.
authenticatorkeyusage: key usage for authenticator.

Set ticket, options and authenticator checksum data using shishi_ap_set_
tktoptionsdata(). The authenticator checksum data is the DER encoding of the
ASN.1 field provided.

Returns SHISHI_OK iff successful.

int shishi_ap_tktoptions (Shishi * handle, Shishi_ap ** ap, [Function]
Shishi_tkt * tkt, int options)
handle: shishi handle as allocated by shishi_init ().
ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.
options: AP-REQ options to set in newly created AP.
Create a new AP exchange using shishi_ap(), and set the ticket and AP-REQ
apoptions using shishi_ap_set_tktoption().
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 39

int shishi_ap_tktoptionsdata (Shishi * handle, Shishi_ap ** ap, [Function]
Shishi_tkt * tkt, int options, const char * data, size_t len)
handle: shishi handle as allocated by shishi_init ().

ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.

options: AP-REQ options to set in newly created AP.

data: input array with data to checksum in Authenticator.

len: length of input array with data to checksum in Authenticator.

Create a new AP exchange using shishi_ap(), and set the ticket, AP-REQ apoptions
and the Authenticator checksum data using shishi_ap_set_tktoptionsdata().

Returns SHISHI_OK iff successful.

int shishi_ap_tktoptionsasnlusage (Shishi * handle, Shishi_ap [Function]
*% ap, Shishi_tkt * tkt, int options, Shishi_asnl node, char * field,
int authenticatorcksumkeyusage, int authenticatorkeyusage)
handle: shishi handle as allocated by shishi_init().

ap: pointer to new structure that holds information about AP exchange
tkt: ticket to set in newly created AP.

options: AP-REQ options to set in newly created AP.

node: input ASN.1 structure to store as authenticator checksum data.
field: field in ASN.1 structure to use.

authenticatorcksumkeyusage: key usage for checksum in authenticator.
authenticatorkeyusage: key usage for authenticator.

Create a new AP exchange using shishi_ap(), and set ticket, options and authen-
ticator checksum data from the DER encoding of the ASN.1 field using shishi_ap_
set_tktoptionsasniusage().

Returns SHISHI_OK iff successful.

Shishi_tkt * shishi_ap_tkt (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange
Returns the ticket from the AP exchange, or NULL if not yet set or an error occured.

void shishi_ap_tkt_set (Shishi_ap * ap, Shishi_tkt * tkt) [Function]
ap: structure that holds information about AP exchange

tkt: ticket to store in AP.
Set the Ticket in the AP exchange.

int shishi_ap_authenticator_cksumdata (Shishi_ap * ap, char * [Function]
out, size_t * len)

ap: structure that holds information about AP exchange
out: output array that holds authenticator checksum data.
len: on input, maximum length of output array that holds authenticator checksum
data, on output actual length of output array that holds authenticator checksum data.
Returns SHISHI_OK if successful, or SHISHI_ TOO_SMALL_BUFFER if buffer pro-
vided was too small.

Chapter 5: Programming Manual 40

void shishi_ap_authenticator_cksumdata_set (Shishi_ap * ap, [Function]
const char * authenticatorcksumdata, size_t
authenticatorcksumdatalen)
ap: structure that holds information about AP exchange

authenticatorcksumdata: input array with authenticator checksum data to use in AP.

authenticatorcksumdatalen: length of input array with authenticator checksum data
to use in AP.

Set the Authenticator Checksum Data in the AP exchange.

int shishi_ap_authenticator_cksumtype (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Get the Authenticator Checksum Type in the AP exchange.

Return the authenticator checksum type.

void shishi_ap_authenticator_cksumtype_set (Shishi_ap * ap, [Function]
int cksumtype)
ap: structure that holds information about AP exchange

cksumtype: authenticator checksum type to set in AP.
Set the Authenticator Checksum Type in the AP exchange.

Shishi_asnl shishi_ap_authenticator (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Returns the Authenticator from the AP exchange, or NULL if not yet set or an error
occured.

void shishi_ap_authenticator_set (Shishi_ap * ap, Shishi_asni [Function]
authenticator)
ap: structure that holds information about AP exchange

authenticator: authenticator to store in AP.
Set the Authenticator in the AP exchange.

Shishi_asnl shishi_ap_req (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Returns the AP-REQ from the AP exchange, or NULL if not yet set or an error
occured.

void shishi_ap_req_set (Shishi_ap * ap, Shishi_asnl apreq) [Function]
ap: structure that holds information about AP exchange

apreq: apreq to store in AP.
Set the AP-REQ in the AP exchange.

int shishi_ap_req_der (Shishi_ap * ap, char ** out, size_t * [Function]
outlen)
ap: structure that holds information about AP exchange

out: pointer to output array with der encoding of AP-REQ.
outlen: pointer to length of output array with der encoding of AP-REQ.

Chapter 5: Programming Manual 41

Build AP-REQ using shishi_ap_req_build() and DER encode it. out is allocated
by this function, and it is the responsibility of caller to deallocate it.

Returns SHISHI_OK iff successful.

int shishi_ap_req_der_set (Shishi_ap * ap, char * der, size_t [Function]
derlen)
ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REQ.
derlen: length of input array with DER encoded AP-REQ.

DER decode AP-REQ and set it AP exchange. If decoding fails, the AP-REQ in the
AP exchange is lost.

Returns SHISHI_OK.

int shishi_ap_req_build (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange
Checksum data in authenticator and add ticket and authenticator to AP-REQ.

Returns SHISHI_OK iff successful.

int shishi_ap_req_process_keyusage (Shishi_ap * ap, Shishi_key [Function]
* key, int32_t keyusage)
ap: structure that holds information about AP exchange
key: cryptographic key used to decrypt ticket in AP-REQ.

keyusage: key usage to use during decryption, for normal AP-REQ’s this is normally
SHISHI_KEYUSAGE_APREQ_AUTHENTICATOR, for AP-REQ’s part of TGS-
REQ’s, this is normally SHISHI_ KEYUSAGE_TGSREQ_-APREQ_AUTHENTICATOR.R

Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ
using key in decrypted ticket, and on success set the Ticket and Authenticator fields
in the AP exchange.

Returns SHISHI_OK iff successful.

int shishi_ap_req_process (Shishi_ap * ap, Shishi_key * key) [Function]
ap: structure that holds information about AP exchange

key: cryptographic key used to decrypt ticket in AP-REQ.

Decrypt ticket in AP-REQ using supplied key and decrypt Authenticator in AP-REQ
using key in decrypted ticket, and on success set the Ticket and Authenticator fields
in the AP exchange.

Returns SHISHI_OK iff successful.

int shishi_ap_req_asnl (Shishi_ap * ap, Shishi_asnl * apreq) [Function]
ap: structure that holds information about AP exchange

apreq: output AP-REQ variable.
Build AP-REQ using shishi_ap_req_build() and return it.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 42

Shishi_key * shishi_ap_key (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Extract the application key from AP. If subkeys are used, it is taken from the Au-
thenticator, otherwise the session key is used.

Return application key from AP.

Shishi_asnl shishi_ap_rep (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Returns the AP-REP from the AP exchange, or NULL if not yet set or an error
occured.

void shishi_ap_rep_set (Shishi_ap * ap, Shishi_asnl aprep) [Function]
ap: structure that holds information about AP exchange

aprep: aprep to store in AP.
Set the AP-REP in the AP exchange.

int shishi_ap_rep_der (Shishi_ap * ap, char ** out, size_t * [Function]
outlen)
ap: structure that holds information about AP exchange

out: output array with newly allocated DER encoding of AP-REP.
outlen: length of output array with DER encoding of AP-REP.

Build AP-REP using shishi_ap_rep_build() and DER encode it. out is allocated
by this function, and it is the responsibility of caller to deallocate it.

Returns SHISHI_OK iff successful.

int shishi_ap_rep_der_set (Shishi_ap * ap, char * der, size_t [Function]
derlen)
ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.

DER decode AP-REP and set it AP exchange. If decoding fails, the AP-REP in the
AP exchange remains.

Returns SHISHI_OK.

int shishi_ap_rep_build (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Checksum data in authenticator and add ticket and authenticator to AP-REP.
Returns SHISHI_OK iff successful.

int shishi_ap_rep_asnl (Shishi_ap * ap, Shishi_asnl * aprep) [Function]
ap: structure that holds information about AP exchange

aprep: output AP-REP variable.
Build AP-REP using shishi_ap_rep_build() and return it.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 43

int shishi_ap_rep_verify (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange
Verify AP-REP compared to Authenticator.
Returns SHISHI_OK, SHISHI_APREP_VERIFY_FAILED or an error.

int shishi_ap_rep_verify_der (Shishi_ap * ap, char * der, size_t [Function]
derlen)
ap: structure that holds information about AP exchange

der: input array with DER encoded AP-REP.

derlen: length of input array with DER encoded AP-REP.

DER decode AP-REP and set it in AP exchange using shishi_ap_rep_der_set()
and verify it using shishi_ap_rep_verify().

Returns SHISHI_OK, SHISHI_APREP_VERIFY_FAILED or an error.

int shishi_ap_rep_verify_asnl (Shishi_ap * ap, Shishi_asnl [Function]
aprep)
ap: structure that holds information about AP exchange
aprep: input AP-REP.
Set the AP-REP in the AP exchange using shishi_ap_rep_set () and verify it using
shishi_ap_rep_verify(Q).
Returns SHISHI_OK, SHISHI_APREP_VERIFY_FAILED or an error.

Shishi_asnl shishi_ap_encapreppart (Shishi_ap * ap) [Function]
ap: structure that holds information about AP exchange

Returns the EncAPREPPart from the AP exchange, or NULL if not yet set or an
error occured.

void shishi_ap_encapreppart_set (Shishi_ap * ap, Shishi_asnl [Function]
encapreppart)
ap: structure that holds information about AP exchange
encapreppart: EncAPRepPart to store in AP.

Set the EncAPRepPart in the AP exchange.

const char * shishi_ap_option2string (Shishi_apoptions option) [Function]
option: enumerated AP-Option type, see Shishi_apoptions.
Convert AP-Option type to AP-Option name string. Note that option must be
just one of the AP-Option types, it cannot be an binary ORed indicating several
AP-Options.
Returns static string with name of AP-Option that must not be deallocated, or "un-
known" if AP-Option was not understood.

Shishi_apoptions shishi_ap_string2option (const char * str) [Function]
str: zero terminated character array with name of AP-Option, e.g. "use-session-key".

Convert AP-Option name to AP-Option type.

Returns enumerated type member corresponding to AP-Option, or 0 if string was not
understood.

Chapter 5: Programming Manual 44

Shishi_asnl shishi_apreq (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init().

This function creates a new AP-REQ, populated with some default values.
Returns the AP-REQ or NULL on failure.

int shishi_apreq_print (Shishi * handle, FILE * fh, Shishi_asnl [Function]

apreq)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for writing.

apreq: AP-REQ to print.

Print ASCII armored DER encoding of AP-REQ to file.
Returns SHISHI_OK iff successful.

int shishi_apreq_save (Shishi * handle, FILE * fh, Shishi_asni [Function]

apreq)
handle: shishi handle as allocated by shishi_init ().

fh: file handle open for writing.

apreq: AP-REQ to save.

Save DER. encoding of AP-REQ to file.
Returns SHISHI_OK iff successful.

int shishi_apreq_to_file (Shishi * handle, Shishi_asnl apreq, int [Function]
filetype, char * filename)
handle: shishi handle as allocated by shishi_init ().

apreq: AP-REQ to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write AP-REQ to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI_OK iff successful.

int shishi_apreq_parse (Shishi * handle, FILE * fh, Shishi_asnl * [Function]

apreq)
handle: shishi handle as allocated by shishi_init().

th: file handle open for reading.

apreq: output variable with newly allocated AP-REQ.

Read ASCII armored DER encoded AP-REQ from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_apreq_read (Shishi * handle, FILE * fh, Shishi_asnl * [Function]

apreq)
handle: shishi handle as allocated by shishi_init().

th: file handle open for reading.

apreq: output variable with newly allocated AP-REQ.

Read DER encoded AP-REQ from file and populate given variable.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 45

int shishi_apreq_from_file (Shishi * handle, Shishi_asnl * apreq, [Function]
int filetype, char * filename)
handle: shishi handle as allocated by shishi_init ().

apreq: output variable with newly allocated AP-REQ.

filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read AP-REQ from file in specified TYPE.

Returns SHISHI_OK iff successful.

int shishi_apreq_set_authenticator (Shishi * handle, [Function]
Shishi_asnl apreq, int32_t etype, const char x buf, size_t buflen)
handle: shishi handle as allocated by shishi_init ().

apreq: AP-REQ to add authenticator field to.

etype: encryption type used to encrypt authenticator.
buf: input array with encrypted authenticator.

buflen: size of input array with encrypted authenticator.

Set the encrypted authenticator field in the AP-REP. The encrypted data is usually
created by calling shishi_encrypt() on the DER encoded authenticator. To save
time, you may want to use shishi_apreq_add_authenticator () instead, which cal-
culates the encrypted data and calls this function in one step.

int shishi_apreq_add_authenticator (Shishi * handle, [Function]
Shishi_asnl apreq, Shishi_key * key, int keyusage, Shishi_asnl
authenticator)

handle: shishi handle as allocated by shishi_init ().

apreq: AP-REQ to add authenticator field to.

key: key to to use for encryption.

keyusage: kerberos key usage value to use in encryption.

authenticator: authenticator as allocated by shishi_authenticator().
Encrypts DER encoded authenticator using key and store it in the AP-REQ.
Returns SHISHI_OK iff successful.

int shishi_apreq_set_ticket (Shishi * handle, Shishi_asnl apreq, [Function]
Shishi_asnl ticket)
handle: shishi handle as allocated by shishi_init ().

apreq: AP-REQ to add ticket field to.

ticket: input ticket to copy into AP-REQ ticket field.
Copy ticket into AP-REQ.

Returns SHISHI_OK iff successful.

int shishi_apreq_options (Shishi * handle, Shishi_asnl apreq, [Function]
int * flags)
handle: shishi handle as allocated by shishi_init ().

Chapter 5: Programming Manual 46

apreq: AP-REQ to get options from.

flags: Output integer containing options from AP-REQ.
Extract the AP-Options from AP-REQ into output integer.
Returns SHISHI_OK iff successful.

int shishi_apreq_use_session_key_p (Shishi * handle, [Function]
Shishi_asnl apreq)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ as allocated by shishi_apreq().
Return non-0 iff the "Use session key" option is set in the AP-REQ.
Returns SHISHI_OK iff successful.

int shishi_apreq_mutual_required_p (Shishi * handle, [Function]
Shishi_asnl apreq)
handle: shishi handle as allocated by shishi_init ().

apreq: AP-REQ as allocated by shishi_apreq().
Return non-0 iff the "Mutual required" option is set in the AP-REQ).
Returns SHISHI_OK iff successful.

int shishi_apreq_options_set (Shishi * handle, Shishi_asnl [Function]
apreq, int options)
handle: shishi handle as allocated by shishi_init ().
apreq: AP-REQ as allocated by shishi_apreq().
options: Options to set in AP-REQ.
Set the AP-Options in AP-REQ to indicate integer.
Returns SHISHI_OK iff successful.

int shishi_apreq_options_add (Shishi * handle, Shishi_asnl [Function]
apreq, int option)
handle: shishi handle as allocated by shishi_init ().
apreq: AP-REQ as allocated by shishi_apreq().
option: Options to add in AP-REQ.

Add the AP-Options in AP-REQ. Options not set in input parameter option are
preserved in the AP-REQ.

Returns SHISHI_OK iff successful.

int shishi_apreq_options_remove (Shishi * handle, Shishi_asnl [Function]
apreq, int option)
handle: shishi handle as allocated by shishi_init().
apreq: AP-REQ as allocated by shishi_apreq().
option: Options to remove from AP-REQ.

Remove the AP-Options from AP-REQ. Options not set in input parameter option
are preserved in the AP-REQ.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 47

int shishi_apreq_get_authenticator_etype (Shishi * handle, [Function]
Shishi_asnl apreq, int32_t * etype)
handle: shishi handle as allocated by shishi_init ().

etype: output variable that holds the value.
Extract KDC-REP.enc-part.etype.
Returns SHISHI_OK iff successful.

int shishi_apreq_get_ticket (Shishi * handle, Shishi_asnl apreq, [Function]
Shishi_asnl * ticket)
handle: shishi handle as allocated by shishi_init().

apreq: AP-REQ variable to get ticket from.
ticket: output variable to hold extracted ticket.
Extract ticket from AP-REQ.

Returns SHISHI_OK iff successful.

Shishi_asnl shishi_aprep (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init ().

This function creates a new AP-REP, populated with some default values.

Returns the authenticator or NULL on failure.

int shishi_aprep_print (Shishi * handle, FILE * fh, Shishi_asni [Function]

aprep)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for writing.

aprep: AP-REP to print.

Print ASCII armored DER encoding of AP-REP to file.
Returns SHISHI_OK iff successful.

int shishi_aprep_save (Shishi * handle, FILE * fh, Shishi_asnl [Function]

aprep)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

aprep: AP-REP to save.

Save DER encoding of AP-REP to file.
Returns SHISHI_OK iff successful.

int shishi_aprep_to_file (Shishi * handle, Shishi_asnl aprep, int [Function]
filetype, char x filename)
handle: shishi handle as allocated by shishi_init ().

aprep: AP-REP to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write AP-REP to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 48

int shishi_aprep_parse (Shishi * handle, FILE * fh, Shishi_asnl * [Function]

aprep)
handle: shishi handle as allocated by shishi_init ().

fth: file handle open for reading.

aprep: output variable with newly allocated AP-REP.

Read ASCII armored DER encoded AP-REP from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_aprep_read (Shishi * handle, FILE * fh, Shishi_asni * [Function]

aprep)
handle: shishi handle as allocated by shishi_init ().

fh: file handle open for reading.

aprep: output variable with newly allocated AP-REP.

Read DER encoded AP-REP from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_aprep_from_file (Shishi * handle, Shishi_asnl * [Function]
aprep, int filetype, char * filename)
handle: shishi handle as allocated by shishi_init().

aprep: output variable with newly allocated AP-REP.

filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read AP-REP from file in specified TYPE.

Returns SHISHI_OK iff successful.

int shishi_aprep_get_enc_part_etype (Shishi * handle, [Function]
Shishi_asnl aprep, int32_t * etype)
handle: shishi handle as allocated by shishi_init().
aprep: AP-REP variable to get value from.
etype: output variable that holds the value.
Extract AP-REP.enc-part.etype.
Returns SHISHI_OK iff successful.

Shishi_asnl shishi_encapreppart (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init ().

This function creates a new EncAPRepPart, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields.

Returns the encapreppart or NULL on failure.

int shishi_encapreppart_print (Shishi * handle, FILE * fh, [Function]
Shishi_asnl encapreppart)
handle: shishi handle as allocated by shishi_init().

th: file handle open for writing.

encapreppart: EncAPRepPart to print.

Print ASCII armored DER encoding of EncAPRepPart to file.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 49

int shishi_encapreppart_save (Shishi * handle, FILE * fh, [Function]
Shishi_asnl encapreppart)
handle: shishi handle as allocated by shishi_init ().

fh: file handle open for writing.
encapreppart: EncAPRepPart to save.

Save DER encoding of EncAPRepPart to file.
Returns SHISHI_OK iff successful.

int shishi_encapreppart_to_file (Shishi * handle, Shishi_asnl [Function]
encapreppart, int filetype, char * filename)
handle: shishi handle as allocated by shishi_init ().

encapreppart: EncAPRepPart to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write EncAPRepPart to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI_OK iff successful.

int shishi_encapreppart_parse (Shishi * handle, FILE * fh, [Function]
Shishi_asnl * encapreppart)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for reading.
encapreppart: output variable with newly allocated EncAPRepPart.

Read ASCII armored DER encoded EncAPRepPart from file and populate given
variable.

Returns SHISHI_OK iff successful.

int shishi_encapreppart_read (Shishi * handle, FILE * fh, [Function]
Shishi_asnl * encapreppart)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for reading.

encapreppart: output variable with newly allocated EncAPRepPart.
Read DER encoded EncAPRepPart from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_encapreppart_from_file (Shishi * handle, Shishi_asnl [Function]
* encapreppart, int filetype, char * filename)
handle: shishi handle as allocated by shishi_init ().

encapreppart: output variable with newly allocated EncAPRepPart.
filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read EncAPRepPart from file in specified TYPE.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 50

int shishi_encapreppart_get_key (Shishi * handle, Shishi_asnl [Function]
encapreppart, int32_t * keytype, char * keyvalue, size_t *
keyvalue_len)
handle: shishi handle as allocated by shishi_init ().

encapreppart: input EncAPRepPart variable.
keytype: output variable that holds key type.
keyvalue: output array with key.

keyvalue_len: on input, maximum size of output array with key, on output, holds the
actual size of output array with key.

Extract the subkey from the encrypted AP-REP part.
Returns SHISHI_OK iff succesful.

int shishi_encapreppart_ctime (Shishi * handle, Shishi_asnl [Function]
encapreppart, char ** ctime)
handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
ctime: newly allocated zero-terminated character array with client time.
Extract client time from EncAPRepPart.

Returns SHISHI_OK iff successful.

int shishi_encapreppart_ctime_set (Shishi * handle, [Function]
Shishi_asnl encapreppart, char * ctime)
handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
ctime: string with generalized time value to store in EncAPRepPart.
Store client time in EncAPRepPart.

Returns SHISHI_OK iff successful.

int shishi_encapreppart_cusec_get (Shishi * handle, [Function]
Shishi_asnl encapreppart, int * cusec)
handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
cusec: output integer with client microseconds field.

Extract client microseconds field from EncAPRepPart.

Returns SHISHI_OK iff successful.

int shishi_encapreppart_cusec_set (Shishi * handle, [Function]
Shishi_asnl encapreppart, int cusec)
handle: shishi handle as allocated by shishi_init ().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
cusec: client microseconds to set in authenticator, 0-999999.

Set the cusec field in the Authenticator.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 51

int shishi_encapreppart_seqnumber_get (Shishi * handle, [Function]

Shishi_asnl encapreppart, uint32_t * seqnumber)
handle: shishi handle as allocated by shishi_init ().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
seqnumber: output integer with sequence number field.

Extract sequence number field from EncAPRepPart.

Returns SHISHI_OK iff successful.

int shishi_encapreppart_time_copy (Shishi * handle, [Function]

5.5

Shishi_asnl encapreppart, Shishi_asnl authenticator)
handle: shishi handle as allocated by shishi_init().

encapreppart: EncAPRepPart as allocated by shishi_encapreppart ().
authenticator: Authenticator to copy time fields from.

Copy time fields from Authenticator into EncAPRepPart.

Returns SHISHI_OK iff successful.

SAFE and PRIV Functions

The “KRB-SAFE” is an ASN.1 structure used by application client and servers to ex-
change integrity protected data. The integrity protection is keyed, usually with a key agreed
on via the AP exchange (see Section 5.4 [AP-REQ and AP-REP Functions|, page 37). The
following illustrates the KRB-SAFE ASN.1 structure.

KRB-SAFE ::= [APPLICATION 20] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (20),
safe-body [2] KRB-SAFE-BODY,
cksum [3] Checksum

}

KRB-SAFE-BODY : := SEQUENCE {
user—data [0] OCTET STRING,
timestamp [1] KerberosTime OPTIONAL,
usec [2] Microseconds OPTIONAL,
seq-number [3] UInt32 OPTIONAL,
s—-address [4] HostAddress,
r-address [5] HostAddress OPTIONAL

}

int shishi_safe (Shishi * handle, Shishi_safe ** safe) [Function]

handle: shishi handle as allocated by shishi_init ().

safe: pointer to new structure that holds information about SAFE exchange
Create a new SAFE exchange.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 52

void shishi_safe_done (Shishi_safe * safe) [Function]
safe: structure that holds information about SAFE exchange

Deallocate resources associated with SAFE exchange. This should be called by the
application when it no longer need to utilize the SAFE exchange handle.

Shishi_key * shishi_safe_key (Shishi_safe * safe) [Function]
safe: structure that holds information about SAFE exchange

Returns the key used in the SAFE exchange, or NULL if not yet set or an error
occured.

void shishi_safe_key_set (Shishi_safe * safe, Shishi_key * key) [Function]
safe: structure that holds information about SAFE exchange
key: key to store in SAFE.

Set the Key in the SAFE exchange.

Shishi_asnl shishi_safe_safe (Shishi_safe * safe) [Function]
safe: structure that holds information about SAFE exchange

Returns the ASN.1 safe in the SAFE exchange, or NULL if not yet set or an error
occured.

void shishi_safe_safe_set (Shishi_safe * safe, Shishi_asnl [Function]
asnlsafe)
safe: structure that holds information about SAFE exchange

asnlsafe: KRB-SAFE to store in SAFE exchange.
Set the KRB-SAFE in the SAFE exchange.

int shishi_safe_safe_der (Shishi_safe * safe, char ** out, size_t [Function]
* outlen)
safe: safe as allocated by shishi_safe().
out: output array with newly allocated DER encoding of SAFE.
outlen: length of output array with DER encoding of SAFE.
DER encode SAFE structure. Typically shishi_safe_build() is used to build the

SAFE structure first. out is allocated by this function, and it is the responsibility of
caller to deallocate it.

Returns SHISHI_OK iff successful.

int shishi_safe_safe_der_set (Shishi_safe * safe, char * der, [Function]
size_t derlen)
safe: safe as allocated by shishi_safe().

der: input array with DER encoded KRB-SAFE.
derlen: length of input array with DER encoded KRB-SAFE.

DER decode KRB-SAFE and set it SAFE exchange. If decoding fails, the KRB-SAFE
in the SAFE exchange remains.

Returns SHISHI_OK.

Chapter 5: Programming Manual 53

int shishi_safe_print (Shishi * handle, FILE * fh, Shishi_asnl [Function]
safe)
handle: shishi handle as allocated by shishi_init ().

fh: file handle open for writing.

safe: SAFE to print.

Print ASCII armored DER encoding of SAFE to file.
Returns SHISHI_OK iff successful.

int shishi_safe_save (Shishi * handle, FILE * fh, Shishi_asni [Function]
safe)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for writing.
safe: SAFE to save.

Save DER encoding of SAFE to file.
Returns SHISHI_OK iff successful.

int shishi_safe_to_file (Shishi * handle, Shishi_asnl safe, int [Function]
filetype, char x filename)
handle: shishi handle as allocated by shishi_init ().

safe: SAFE to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write SAFE to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI_OK iff successful.

int shishi_safe_parse (Shishi * handle, FILE * fh, Shishi_asnl * [Function]
safe)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for reading.

safe: output variable with newly allocated SAFE.

Read ASCII armored DER, encoded SAFE from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_safe_read (Shishi * handle, FILE * fh, Shishi_asnl * [Function]
safe)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for reading.

safe: output variable with newly allocated SAFE.

Read DER encoded SAFE from file and populate given variable.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 54

int shishi_safe_from_file (Shishi * handle, Shishi_asnl * safe, [Function]
int filetype, const char * filename)
handle: shishi handle as allocated by shishi_init ().

safe: output variable with newly allocated SAFE.

filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read SAFE from file in specified TYPE.

Returns SHISHI_OK iff successful.

int shishi_safe_cksum (Shishi * handle, Shishi_asnl safe, [Function]
int32_t * cksumtype, char ** cksum, size_t * cksumlen)
handle: shishi handle as allocated by shishi_init ().

safe: safe as allocated by shishi_safe().

cksumtype: output checksum type.

cksum: output array with newly allocated checksum data from SAFE.
cksumlen: output size of output checksum data buffer.

Read checksum value from KRB-SAFE. cksum is allocated by this function, and it is
the responsibility of caller to deallocate it.

Returns SHISHI_OK iff successful.

int shishi_safe_set_cksum (Shishi * handle, Shishi_asnl safe, [Function]
int32_t cksumtype, const char * cksum, size_t cksumlen)
handle: shishi handle as allocated by shishi_init ().

safe: safe as allocated by shishi_safe().

cksumtype: input checksum type to store in SAFE.
cksum: input checksum data to store in SAFE.
cksumlen: size of input checksum data to store in SAFE.

Store checksum value in SAFE. A checksum is usually created by calling shishi_
checksum() on some application specific data using the key from the ticket that is
being used. To save time, you may want to use shishi_safe_build () instead, which
calculates the checksum and calls this function in one step.

Returns SHISHI_OK iff successful.

int shishi_safe_user_data (Shishi * handle, Shishi_asnl safe, [Function]
char ** userdata, size_t * userdatalen)
handle: shishi handle as allocated by shishi_init ().

safe: safe as allocated by shishi_safe().
userdata: output array with newly allocated user data from KRB-SAFE.
userdatalen: output size of output user data buffer.

Read user data value from KRB-SAFE. userdata is allocated by this function, and
it is the responsibility of caller to deallocate it.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 55

int shishi_safe_set_user_data (Shishi * handle, Shishi_asnl [Function]
safe, const char * userdata, size_t userdatalen)
handle: shishi handle as allocated by shishi_init ().
safe: safe as allocated by shishi_safe().
userdata: input user application to store in SAFE.
userdatalen: size of input user application to store in SAFE.
Set the application data in SAFE.
Returns SHISHI_OK iff successful.

int shishi_safe_build (Shishi_safe * safe, Shishi_key * key) [Function]
safe: safe as allocated by shishi_safe().
key: key for session, used to compute checksum.
Build checksum and set it in KRB-SAFE. Note that this follows RFC 1510bis and
is incompatible with RFC 1510, although presumably few implementations use the
RFC1510 algorithm.
Returns SHISHI_OK iff successful.

int shishi_safe_verify (Shishi_safe * safe, Shishi_key * key) [Function]
safe: safe as allocated by shishi_safe().

key: key for session, used to verify checksum.

Verify checksum in KRB-SAFE. Note that this follows RFC 1510bis and is incom-
patible with RFC 1510, although presumably few implementations use the RFC1510
algorithm.

Returns SHISHI_OK iff successful, SHISHI_SAFE_BAD_KEYTYPE if an incompat-
ible key type is used, or SHISHI_SAFE_VERIFY_FAILED if the actual verification
failed.

The “KRB-PRIV” is an ASN.1 structure used by application client and servers to ex-
change confidential data. The confidentiality is keyed, usually with a key agreed on via the
AP exchange (see Section 5.4 [AP-REQ and AP-REP Functions]|, page 37). The following
illustrates the KRB-PRIV ASN.1 structure.

KRB-PRIV ::= [APPLICATION 21] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (21),
-- NOTE: there is no [2] tag
enc-part [3] EncryptedData -- EncKrbPrivPart
}
EncKrbPrivPart ::= [APPLICATION 28] SEQUENCE {
user-data [0] OCTET STRING,
timestamp [1] KerberosTime OPTIONAL,
usec [2] Microseconds OPTIONAL,
seq-number [3] UInt32 OPTIONAL,
s-address [4] HostAddress -- sender’s addr --,
r-address [6] HostAddress OPTIONAL -- recip’s addr

Chapter 5: Programming Manual 56

int shishi_priv (Shishi * handle, Shishi_priv ** priv) [Function]
handle: shishi handle as allocated by shishi_init().
priv: pointer to new structure that holds information about PRIV exchange
Create a new PRIV exchange.
Returns SHISHI_OK iff successful.

void shishi_priv_done (Shishi_priv * priv) [Function]
priv: structure that holds information about PRIV exchange

Deallocate resources associated with PRIV exchange. This should be called by the
application when it no longer need to utilize the PRIV exchange handle.

Shishi_key * shishi_priv_key (Shishi_priv * priv) [Function]
priv: structure that holds information about PRIV exchange

Returns the key used in the PRIV exchange, or NULL if not yet set or an error
occured.

void shishi_priv_key_set (Shishi_priv * priv, Shishi_key * key) [Function]
priv: structure that holds information about PRIV exchange
key: key to store in PRIV.
Set the Key in the PRIV exchange.

Shishi_asnl shishi_priv_priv (Shishi_priv * priv) [Function]
priv: structure that holds information about PRIV exchange

Returns the ASN.1 priv in the PRIV exchange, or NULL if not yet set or an error
occured.

void shishi_priv_priv_set (Shishi_priv * priv, Shishi_asnl [Function]
asnlpriv)
priv: structure that holds information about PRIV exchange
asnlpriv: KRB-PRIV to store in PRIV exchange.

Set the KRB-PRIV in the PRIV exchange.

int shishi_priv_priv_der (Shishi_priv * priv, char ** out, size_t [Function]
* outlen)

priv: priv as allocated by shishi_priv().
out: output array with newly allocated DER encoding of PRIV.
outlen: length of output array with DER encoding of PRIV.
DER encode PRIV structure. Typically shishi_priv_build() is used to build the
PRIV structure first. out is allocated by this function, and it is the responsibility of
caller to deallocate it.

Returns SHISHI_OK iff successful.

int shishi_priv_priv_der_set (Shishi_priv * priv, char * der, [Function]
size_t derlen)
priv: priv as allocated by shishi_priv().

der: input array with DER encoded KRB-PRIV.

Chapter 5: Programming Manual 57

derlen: length of input array with DER encoded KRB-PRIV.

DER decode KRB-PRIV and set it PRIV exchange. If decoding fails, the KRB-PRIV
in the PRIV exchange remains.

Returns SHISHI_OK.

Shishi_asnl shishi_priv_encprivpart (Shishi_priv * priv) [Function]
priv: structure that holds information about PRIV exchange

Returns the ASN.1 encprivpart in the PRIV exchange, or NULL if not yet set or an
error occured.

void shishi_priv_encprivpart_set (Shishi_priv * priv, [Function]
Shishi_asnl asnlencprivpart)
priv: structure that holds information about PRIV exchange

asnlencprivpart: ENCPRIVPART to store in PRIV exchange.
Set the ENCPRIVPART in the PRIV exchange.

int shishi_priv_encprivpart_der (Shishi_priv * priv, char *x [Function]
out, size_t * outlen)
priv: priv as allocated by shishi_priv().

out: output array with newly allocated DER encoding of ENCPRIVPART.
outlen: length of output array with DER encoding of ENCPRIVPART.

DER encode ENCPRIVPART structure. Typically shishi_encprivpart_build() is
used to build the ENCPRIVPART structure first. out is allocated by this function,
and it is the responsibility of caller to deallocate it.

Returns SHISHI_OK iff successful.

int shishi_priv_encprivpart_der_set (Shishi_priv * priv, char * [Function]
der, size_t derlen)
priv: priv as allocated by shishi_priv().

der: input array with DER encoded ENCPRIVPART.
derlen: length of input array with DER encoded ENCPRIVPART.

DER decode ENCPRIVPART and set it PRIV exchange. If decoding fails, the
ENCPRIVPART in the PRIV exchange remains.

Returns SHISHI_OK.

int shishi_priv_print (Shishi * handle, FILE * fh, Shishi_asni [Function]
priv)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for writing.

priv: PRIV to print.

Print ASCII armored DER encoding of PRIV to file.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 58

int shishi_priv_save (Shishi * handle, FILE * fh, Shishi_asnl [Function]

priv)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for writing.
priv: PRIV to save.

Save DER encoding of PRIV to file.
Returns SHISHI_OK iff successful.

int shishi_priv_to_file (Shishi * handle, Shishi_asnl priv, int [Function]
filetype, char x filename)
handle: shishi handle as allocated by shishi_init().

priv: PRIV to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write PRIV to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI_OK iff successful.

int shishi_priv_parse (Shishi * handle, FILE * fh, Shishi_asnl * [Function]
priv)
handle: shishi handle as allocated by shishi_init ().
th: file handle open for reading.
priv: output variable with newly allocated PRIV.
Read ASCII armored DER encoded PRIV from file and populate given variable.

Returns SHISHI_OK iff successful.

int shishi_priv_read (Shishi * handle, FILE * fh, Shishi_asni * [Function]
priv)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

priv: output variable with newly allocated PRIV.

Read DER encoded PRIV from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_priv_from_file (Shishi * handle, Shishi_asnl * priv, [Function]
int filetype, const char * filename)
handle: shishi handle as allocated by shishi_init ().

priv: output variable with newly allocated PRIV.

filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read PRIV from file in specified TYPE.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 59

int shishi_priv_enc_part_etype (Shishi * handle, Shishi_asnl [Function]
priv, int32_t * etype)
handle: shishi handle as allocated by shishi_init ().

priv: PRIV variable to get value from.
etype: output variable that holds the value.
Extract PRIV.enc-part.etype.

Returns SHISHI_OK iff successful.

int shishi_priv_set_enc_part (Shishi * handle, Shishi_asni priv, [Function]
int32_t etype, const char * encpart, size_t encpartlen)
handle: shishi handle as allocated by shishi_init().

priv: priv as allocated by shishi_priv().

etype: input encryption type to store in PRIV.

encpart: input encrypted data to store in PRIV.
encpartlen: size of input encrypted data to store in PRIV.

Store encrypted data in PRIV. The encrypted data is usually created by calling
shishi_encrypt() on some application specific data using the key from the ticket
that is being used. To save time, you may want to use shishi_priv_build() instead,
which encryptes the data and calls this function in one step.

Returns SHISHI_OK iff successful.

int shishi_encprivpart_user_data (Shishi * handle, Shishi_asnl [Function]
encprivpart, char ** userdata, size_t * userdatalen)
handle: shishi handle as allocated by shishi_init().

encprivpart: encprivpart as allocated by shishi_priv().
userdata: output array with newly allocated user data from KRB-PRIV.
userdatalen: output size of output user data buffer.

Read user data value from KRB-PRIV. userdata is allocated by this function, and
it is the responsibility of caller to deallocate it.

Returns SHISHI_OK iff successful.

int shishi_encprivpart_set_user_data (Shishi * handle, [Function]
Shishi_asnl encprivpart, const char * userdata, size_t userdatalen)
handle: shishi handle as allocated by shishi_init ().

encprivpart: encprivpart as allocated by shishi_priv().
userdata: input user application to store in PRIV.
userdatalen: size of input user application to store in PRIV.
Set the application data in PRIV.

Returns SHISHI_OK iff successful.

int shishi_priv_build (Shishi_priv * priv, Shishi_key * key) [Function]
priv: priv as allocated by shishi_priv().

key: key for session, used to encrypt data.

Chapter 5: Programming Manual 60

Build checksum and set it in KRB-PRIV. Note that this follows RFC 1510bis and
is incompatible with RFC 1510, although presumably few implementations use the
RFC1510 algorithm.

Returns SHISHI_OK iff successful.

int shishi_priv_process (Shishi_priv * priv, Shishi_key * key) [Function]
priv: priv as allocated by shishi_priv().

key: key to use to decrypt EncPrivPart.

Decrypt encrypted data in KRB-PRIV and set the EncPrivPart in the PRIV ex-
change.

Returns SHISHI_OK iff successful, SHISHI_PRIV_BAD_KEYTYPE if an incompat-
ible key type is used, or SHISHI_CRYPTO_ERROR if the actual decryption failed.

5.6 Ticket Functions

int shishi_tkt (Shishi * handle, Shishi_tkt ** tkt) [Function]
handle: shishi handle as allocated by shishi_init().

tkt: output variable with newly allocated ticket.
Create a new ticket handle.
Returns SHISHI_OK iff successful.

Shishi_tkt * shishi_tkt2 (Shishi * handle, Shishi_asnl ticket, [Function]
Shishi_asnl enckdcreppart, Shishi_asnl kdcrep)
handle: shishi handle as allocated by shishi_init().

ticket: input variable with ticket.

enckdcreppart: input variable with auxilliary ticket information.
kdcrep: input variable with KDC-REP ticket information.
Create a new ticket handle.

Returns new ticket handle, or NULL on error.

void shishi_tkt_done (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Deallocate resources associated with ticket. The ticket must not be used again after
this call.

Shishi_asnl shishi_tkt_ticket (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Returns actual ticket.

Shishi_asnl shishi_tkt_enckdcreppart (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Returns auxilliary ticket information.

Chapter 5: Programming Manual

void shishi_tkt_enckdcreppart_set (Shishi_tkt * tkt,
Shishi_asnl enckdcreppart)
enckdcreppart: EncKDCRepPart to store in Ticket.

Set the EncKDCRepPart in the Ticket.

Shishi_asnl shishi_tkt_kdcrep (Shishi_tkt * tkt)
tkt: input variable with ticket info.

Returns KDC-REP information.

Shishi_asnl shishi_tkt_encticketpart (Shishi_tkt * tkt)
tkt: input variable with ticket info.

Returns EncTicketPart information.

void shishi_tkt_encticketpart_set (Shishi_tkt * tkt, Shishi_asnl
encticketpart)
tkt: input variable with ticket info.

encticketpart: encticketpart to store in ticket.

Set the EncTicketPart in the Ticket.

Shishi_key * shishi_tkt_key (Shishi_tkt * tkt)
tkt: input variable with ticket info.

Returns key extracted from enckdcreppart.

int shishi_tkt_key_set (Shishi_tkt * tkt, Shishi_key * key)
tkt: input variable with ticket info.

key: key to store in ticket.
Set the key in the EncTicketPart.
Returns SHISHI_OK iff successful.

int shishi_tkt_client (Shishi_tkt * tkt, char * client, size_t *
clientlen)
tkt: input variable with ticket info.

client: output buffer that holds client name of ticket.

61

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

clientlen: on input, maximum size of output buffer, on output, actual size of output

buffer.

Returns client principal of ticket.

int shishi_tkt_client_p (Shishi_tkt * tkt, const char * client)
tkt: input variable with ticket info.

client: client name of ticket.
Determine if ticket is for specified client.

Returns non-0 iff ticket is for specified client.

[Function]

Chapter 5: Programming Manual

int shishi_tkt_cnamerealm_p (Shishi_tkt * tkt, const char *
client)
tkt: input variable with ticket info.

client: principal name (client name and realm) of ticket.
Determine if ticket is for specified client principal.

Returns non-0 iff ticket is for specified client principal.

int shishi_tkt_realm (Shishi_tkt * tkt, char ** realm, size_t *
realmlen)
tkt: input variable with ticket info.

realm: pointer to newly allocated character array with realm name.

realmlen: length of newly allocated character array with realm name.

Extract realm of server in ticket.
Returns SHISHI_OK iff successful.

int shishi_tkt_server_p (Shishi_tkt * tkt, const char * server)
tkt: input variable with ticket info.

server: server name of ticket.
Determine if ticket is for specified server.

Returns non-0 iff ticket is for specified server.

int shishi_tkt_flags (Shishi_tkt * tkt, int * flags)
tkt: input variable with ticket info.

flags: pointer to output integer with flags.
Extract flags in ticket.
Returns SHISHI_OK iff successful.

int shishi_tkt_flags_set (Shishi_tkt * tkt, int flags)
tkt: input variable with ticket info.

flags: integer with flags to store in ticket.
Set flags in ticket. Note that this reset any already existing flags.
Returns SHISHI_OK iff successful.

int shishi_tkt_forwardable_p (Shishi_tkt * tkt)
tkt: input variable with ticket info.

Determine if ticket is forwardable.

62

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

The FORWARDABLE flag in a ticket is normally only interpreted by the ticket-
granting service. It can be ignored by application servers. The FORWARDABLE flag
has an interpretation similar to that of the PROXIABLE flag, except ticket-granting
tickets may also be issued with different network addresses. This flag is reset by
default, but users MAY request that it be set by setting the FORWARDABLE option

in the AS request when they request their initial ticket-granting ticket.

Returns non-0 iff forwardable flag is set in ticket.

Chapter 5: Programming Manual 63

int shishi_tkt_forwarded_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.
Determine if ticket is forwarded.
The FORWARDED flag is set by the TGS when a client presents a ticket with the
FORWARDABLE flag set and requests a forwarded ticket by specifying the FOR-
WARDED KDC option and supplying a set of addresses for the new ticket. It is
also set in all tickets issued based on tickets with the FORWARDED flag set. Ap-
plication servers may choose to process FORWARDED tickets differently than non-
FORWARDED tickets.

Returns non-0 iff forwarded flag is set in ticket.

int shishi_tkt_proxiable_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.
Determine if ticket is proxiable.
The PROXTABLE flag in a ticket is normally only interpreted by the ticket-granting
service. It can be ignored by application servers. When set, this flag tells the ticket-
granting server that it is OK to issue a new ticket (but not a ticket-granting ticket)
with a different network address based on this ticket. This flag is set if requested by
the client on initial authentication. By default, the client will request that it be set
when requesting a ticket-granting ticket, and reset when requesting any other ticket.

Returns non-0 iff proxiable flag is set in ticket.

int shishi_tkt_proxy_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Determine if ticket is proxy ticket.

The PROXY flag is set in a ticket by the TGS when it issues a proxy ticket. Appli-
cation servers MAY check this flag and at their option they MAY require additional
authentication from the agent presenting the proxy in order to provide an audit trail.

Returns non-0 iff proxy flag is set in ticket.

int shishi_tkt_may_postdate_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Determine if ticket may be used to grant postdated tickets.

The MAY-POSTDATE flag in a ticket is normally only interpreted by the ticket-
granting service. It can be ignored by application servers. This flag MUST be set
in a ticket-granting ticket in order to issue a postdated ticket based on the presented
ticket. It is reset by default; it MAY be requested by a client by setting the ALLOW-
POSTDATE option in the KRB_AS_REQ message. This flag does not allow a client
to obtain a postdated ticket-granting ticket; postdated ticket-granting tickets can
only by obtained by requesting the postdating in the KRB_AS_REQ message. The
life (endtime-starttime) of a postdated ticket will be the remaining life of the ticket-
granting ticket at the time of the request, unless the RENEWABLE option is also set,
in which case it can be the full life (endtime-starttime) of the ticket-granting ticket.
The KDC MAY limit how far in the future a ticket may be postdated.

Returns non-0 iff may-postdate flag is set in ticket.

Chapter 5: Programming Manual 64

int shishi_tkt_postdated_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Determine if ticket is postdated.

The POSTDATED flag indicates that a ticket has been postdated. The application
server can check the authtime field in the ticket to see when the original authentication
occurred. Some services MAY choose to reject postdated tickets, or they may only
accept them within a certain period after the original authentication. When the
KDC issues a POSTDATED ticket, it will also be marked as INVALID, so that the
application client MUST present the ticket to the KDC to be validated before use.

Returns non-0 iff postdated flag is set in ticket.

int shishi_tkt_invalid_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.
Determine if ticket is invalid.

The INVALID flag indicates that a ticket is invalid. Application servers MUST reject
tickets which have this flag set. A postdated ticket will be issued in this form. Invalid
tickets MUST be validated by the KDC before use, by presenting them to the KDC
in a TGS request with the VALIDATE option specified. The KDC will only validate
tickets after their starttime has passed. The validation is required so that postdated
tickets which have been stolen before their starttime can be rendered permanently
invalid (through a hot-list mechanism).

Returns non-0 iff invalid flag is set in ticket.

int shishi_tkt_renewable_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Determine if ticket is renewable.

The RENEWABLE flag in a ticket is normally only interpreted by the ticket-granting
service (discussed below in section 3.3). It can usually be ignored by application
servers. However, some particularly careful application servers MAY disallow renew-
able tickets.

Returns non-0 iff renewable flag is set in ticket.

int shishi_tkt_initial_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.
Determine if ticket was issued using AS exchange.

The INITIAL flag indicates that a ticket was issued using the AS protocol, rather than
issued based on a ticket-granting ticket. Application servers that want to require the
demonstrated knowledge of a client’s secret key (e.g. a password-changing program)
can insist that this flag be set in any tickets they accept, and thus be assured that
the client’s key was recently presented to the application client.

Returns non-0 iff initial flag is set in ticket.

int shishi_tkt_pre_authent_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Determine if ticket was pre-authenticated.

Chapter 5: Programming Manual 65

The PRE-AUTHENT and HW-AUTHENT flags provide additional information
about the initial authentication, regardless of whether the current ticket was
issued directly (in which case INITIAL will also be set) or issued on the
basis of a ticket-granting ticket (in which case the INITIAL flag is clear, but
the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the
ticket-granting ticket).

Returns non-0 iff pre-authent flag is set in ticket.

int shishi_tkt_hw_authent_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Determine if ticket is authenticated using a hardware token.

The PRE-AUTHENT and HW-AUTHENT flags provide additional information
about the initial authentication, regardless of whether the current ticket was
issued directly (in which case INITIAL will also be set) or issued on the
basis of a ticket-granting ticket (in which case the INITIAL flag is clear, but
the PRE-AUTHENT and HW-AUTHENT flags are carried forward from the
ticket-granting ticket).

Returns non-0 iff hw-authent flag is set in ticket.

int shishi_tkt_transited_policy_checked_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Determine if ticket has been policy checked for transit.

In Kerberos, the application server is ultimately responsible for accepting or rejecting
authentication and SHOULD check that only suitably trusted KDCs are relied upon
to authenticate a principal. The transited field in the ticket identifies which realms
(and thus which KDCs) were involved in the authentication process and an application
server would normally check this field. If any of these are untrusted to authenticate
the indicated client principal (probably determined by a realm-based policy), the
authentication attempt MUST be rejected. The presence of trusted KDCs in this list
does not provide any guarantee; an untrusted KDC may have fabricated the list.

While the end server ultimately decides whether authentication is valid, the KDC for
the end server’s realm MAY apply a realm specific policy for validating the transited
field and accepting credentials for cross-realm authentication. When the KDC applies
such checks and accepts such cross-realm authentication it will set the TRANSITED-
POLICY-CHECKED flag in the service tickets it issues based on the cross-realm
TGT. A client MAY request that the KDCs not check the transited field by setting
the DISABLE-TRANSITED-CHECK flag. KDCs are encouraged but not required
to honor this flag.

Application servers MUST either do the transited-realm checks themselves, or reject
cross-realm tickets without TRANSITED-POLICY- CHECKED set.

Returns non-0 iff transited-policy-checked flag is set in ticket.

int shishi_tkt_ok_as_delegate_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Determine if ticket is ok as delegated ticket.

Chapter 5: Programming Manual 66

The copy of the ticket flags in the encrypted part of the KDC reply may have the
OK-AS-DELEGATE flag set to indicates to the client that the server specified in
the ticket has been determined by policy of the realm to be a suitable recipient of
delegation. A client can use the presence of this flag to help it make a decision whether
to delegate credentials (either grant a proxy or a forwarded ticket- granting ticket)
to this server. It is acceptable to ignore the value of this flag. When setting this
flag, an administrator should consider the security and placement of the server on
which the service will run, as well as whether the service requires the use of delegated
credentials.

Returns non-0 iff ok-as-delegate flag is set in ticket.

int shishi_tkt_keytype (Shishi_tkt * tkt, int32_t * etype) [Function]
tkt: input variable with ticket info.

etype: pointer to encryption type that is set, see Shishi_etype.
Extract encryption type of key in ticket (really EncKDCRepPart).
Returns SHISHI_OK iff successful.

int shishi_tkt_keytype_p (Shishi_tkt * tkt, int32_t etype) [Function]
tkt: input variable with ticket info.

etype: encryption type, see Shishi_etype.

Determine if key in ticket (really EncKDCRepPart) is of specified key type (really
encryption type).

Returns non-0 iff key in ticket is of specified encryption type.

time_t shishi_tkt_lastreqc (Shishi_tkt * tkt, Shishi_lrtype [Function]

1rtype)
tkt: input variable with ticket info.

Irtype: lastreq type to extract, see Shishi_lrtype. E.g., SHISHI_LRTYPE_LAST_REQUEST }}
Extract C time corresponding to given lastreq type field in the ticket.
Returns C time interpretation of the specified lastreq field, or (time_t) -1.

time_t shishi_tkt_authctime (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Extract C time corresponding to the authtime field. The field holds the time when
the original authentication took place that later resulted in this ticket.

Returns C time interpretation of the endtime in ticket.

time_t shishi_tkt_startctime (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Extract C time corresponding to the starttime field. The field holds the time where
the ticket start to be valid (typically in the past).

Returns C time interpretation of the endtime in ticket.

Chapter 5: Programming Manual 67

time_t shishi_tkt_endctime (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Extract C time corresponding to the endtime field. The field holds the time where
the ticket stop being valid.

Returns C time interpretation of the endtime in ticket.

time_t shishi_tkt_renew_tillc (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Extract C time corresponding to the renew-till field. The field holds the time where
the ticket stop being valid for renewal.

Returns C time interpretation of the renew-till in ticket.

int shishi_tkt_valid_at_time_p (Shishi_tkt * tkt, time_t now) [Function]
tkt: input variable with ticket info.

now: time to check for.
Determine if ticket is valid at a specific point in time.

Returns non-0 iff ticket is valid (not expired and after starttime) at specified time.

int shishi_tkt_valid_now_p (Shishi_tkt * tkt) [Function]
tkt: input variable with ticket info.

Determine if ticket is valid now.

Returns 0 iff ticket is invalid (expired or not yet valid).

void shishi_tkt_lastreq_pretty_print (Shishi_tkt * tkt, FILE * [Function]
fh)
tkt: input variable with ticket info.

fh: file handle open for writing.

Print a human readable representation of the various lastreq fields in the ticket (really
EncKDCRepPart).

void shishi_tkt_pretty_print (Shishi_tkt * tkt, FILE * fh) [Function]
tkt: input variable with ticket info.

fh: file handle open for writing.

Print a human readable representation of a ticket to file handle.

5.7 AS Functions

The Authentication Service (AS) is used to get an initial ticket using e.g. your password.
The following illustrates the AS-REQ and AS-REP ASN.1 structures.

-- Request --
AS-REQ ::= KDC-REQ {10}
KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {

pvno [1] INTEGER (5) -- first tag is [1], not [0] --,

Chapter 5: Programming Manual

msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body (4] KDC-REQ-BODY
}
KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL
-- Used only in AS-REQ --,
realm [2] Realm
—-— Server’s realm
-— Also client’s in AS-REQ --,
sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType
-- in preference order --,
addresses [9] HostAddresses OPTIONAL,
enc-authorization-data [10] EncryptedData {
AuthorizationData,
{ keyuse-TGSReqAuthData-sesskey
| keyuse-TGSRegAuthData-subkey
} OPTIONAL,
additional-tickets [11] SEQUENCE OF Ticket OPTIONAL
}
-- Reply --
AS-REP ::= KDC-REP {11, EncASRepPart, {keyuse-EncASRepPartl}}
KDC-REP {INTEGER:tagnum,
TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),
padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [5] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}
}
EncASRepPart = [APPLICATION 25] EncKDCRepPart

EncKDCRepPart SEQUENCE {

Chapter 5: Programming Manual 69

key [0] EncryptionKey,

last-req [1] LastReq,

nonce [2] UInt32,

key-expiration [3] KerberosTime OPTIONAL,

flags [4] TicketFlags,

authtime [6] KerberosTime,

starttime [6] KerberosTime OPTIONAL,

endtime [7] KerberosTime,

renew-till [8] KerberosTime OPTIONAL,

srealm [9] Realm,

sname [10] PrincipalName,

caddr [11] HostAddresses OPTIONAL
}

int shishi_as (Shishi * handle, Shishi_as ** as) [Function]
handle: shishi handle as allocated by shishi_init ().

as: holds pointer to newly allocate Shishi_as structure.

Allocate a new AS exchange variable.
Returns SHISHI_OK iff successful.

void shishi_as_done (Shishi_as * as) [Function]
as: structure that holds information about AS exchange

Deallocate resources associated with AS exchange. This should be called by the
application when it no longer need to utilize the AS exchange handle.

Shishi_asnl shishi_as_req (Shishi_as * as) [Function]
as: structure that holds information about AS exchange

Returns the generated AS-REQ packet from the AS exchange, or NULL if not yet set
or an error occured.

int shishi_as_req_build (Shishi_as * as) [Function]
as: structure that holds information about AS exchange

Possibly remove unset fields (e.g., rtime).
Returns SHISHI_OK iff successful.

void shishi_as_req_set (Shishi_as * as, Shishi_asnl asreq) [Function]
as: structure that holds information about AS exchange

asreq: asreq to store in AS.
Set the AS-REQ in the AS exchange.

int shishi_as_req_der (Shishi_as * as, char ** out, size_t * [Function]
outlen)
as: structure that holds information about AS exchange

out: output array with newly allocated DER encoding of AS-REQ.
outlen: length of output array with DER encoding of AS-REQ.

DER encode AS-REQ. out is allocated by this function, and it is the responsibility
of caller to deallocate it.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 70

int shishi_as_req_der_set (Shishi_as * as, char * der, size_t [Function]
derlen)
as: structure that holds information about AS exchange

der: input array with DER encoded AP-REQ.
derlen: length of input array with DER encoded AP-REQ.

DER decode AS-REQ and set it AS exchange. If decoding fails, the AS-REQ in the
AS exchange remains.

Returns SHISHI_OK.

Shishi_asnl shishi_as_rep (Shishi_as * as) [Function]
as: structure that holds information about AS exchange

Returns the received AS-REP packet from the AS exchange, or NULL if not yet set
or an error occured.

int shishi_as_rep_process (Shishi_as * as, Shishi_key * key, [Function]
const char * password)
as: structure that holds information about AS exchange

key: user’s key, used to encrypt the encrypted part of the AS-REP.
password: user’s password, used if key is NULL.

Process new AS-REP and set ticket. The key is used to decrypt the AP-REP. If both
key and password is NULL, the user is queried for it.

Returns SHISHI_OK iff successful.

int shishi_as_rep_build (Shishi_as * as, Shishi_key * key) [Function]
as: structure that holds information about AS exchange

key: user’s key, used to encrypt the encrypted part of the AS-REP.
Build AS-REP.
Returns SHISHI_OK iff successful.

int shishi_as_rep_der (Shishi_as * as, char ** out, size_t * [Function]
outlen)
as: structure that holds information about AS exchange

out: output array with newly allocated DER encoding of AS-REP.
outlen: length of output array with DER encoding of AS-REP.

DER encode AS-REP. out is allocated by this function, and it is the responsibility of
caller to deallocate it.

Returns SHISHI_OK iff successful.

void shishi_as_rep_set (Shishi_as * as, Shishi_asnl asrep) [Function]
as: structure that holds information about AS exchange

asrep: asrep to store in AS.
Set the AS-REP in the AS exchange.

Chapter 5: Programming Manual 71

int shishi_as_rep_der_set (Shishi_as * as, char * der, size_t [Function]
derlen)
as: structure that holds information about AS exchange

der: input array with DER encoded AP-REP.
derlen: length of input array with DER encoded AP-REP.

DER decode AS-REP and set it AS exchange. If decoding fails, the AS-REP in the
AS exchange remains.

Returns SHISHI_OK.

Shishi_asnl shishi_as_krberror (Shishi_as * as) [Function]
as: structure that holds information about AS exchange

Returns the received KRB-ERROR packet from the AS exchange, or NULL if not yet
set or an error occured.

int shishi_as_krberror_der (Shishi_as * as, char ** out, size_t * [Function]
outlen)
as: structure that holds information about AS exchange

out: output array with newly allocated DER encoding of KRB-ERROR.
outlen: length of output array with DER encoding of KRB-ERROR.

DER encode KRB-ERROR. out is allocated by this function, and it is the responsi-
bility of caller to deallocate it.

Returns SHISHI_OK iff successful.

void shishi_as_krberror_set (Shishi_as * as, Shishi_asn1 [Function]
krberror)
as: structure that holds information about AS exchange

krberror: krberror to store in AS.
Set the KRB-ERROR in the AS exchange.

Shishi_tkt * shishi_as_tkt (Shishi_as * as) [Function]
as: structure that holds information about AS exchange

Returns the newly aquired tkt from the AS exchange, or NULL if not yet set or an
error occured.

void shishi_as_tkt_set (Shishi_as * as, Shishi_tkt * tkt) [Function]
as: structure that holds information about AS exchange

tkt: tkt to store in AS.
Set the Tkt in the AS exchange.

int shishi_as_sendrecv (Shishi_as * as) [Function]
as: structure that holds information about AS exchange

Send AS-REQ and receive AS-REP or KRB-ERROR. This is the initial authentica-
tion, usually used to acquire a Ticket Granting Ticket.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 72

5.8 TGS Functions

The Ticket Granting Service (TGS) is used to get subsequent tickets, authenticated by
other tickets (so called ticket granting tickets). The following illustrates the TGS-REQ and
TGS-REP ASN.1 structures.

-- Request -—-

TGS-REQ ::= KDC-REQ {12}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm
-— Server’s realm
—-- Also client’s in AS-REQ --,
sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [5] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType
-- in preference order --,
addresses [9] HostAddresses OPTIONAL,
enc-authorization-data [10] EncryptedData {
AuthorizationData,
{ keyuse-TGSRegAuthData-sesskey
| keyuse-TGSReqAuthData-subkey }
} OPTIONAL,
additional-tickets [11] SEQUENCE OF Ticket OPTIONAL

}

-- Reply --

TGS-REP ::= KDC-REP {13, EncTGSRepPart,

{ keyuse-EncTGSRepPart-sesskey
| keyuse-EncTGSRepPart-subkey }}

KDC-REP {INTEGER:tagnum,

Chapter 5: Programming Manual 73

TypeToEncrypt,
UInt32:KeyUsages} ::= [APPLICATION tagnum] SEQUENCE {
pvno [0] INTEGER (5),
msg-type [1] INTEGER (tagnum),
padata [2] SEQUENCE OF PA-DATA OPTIONAL,
crealm [3] Realm,
cname [4] PrincipalName,
ticket [6] Ticket,
enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}
}
EncTGSRepPart = [APPLICATION 26] EncKDCRepPart
EncKDCRepPart = SEQUENCE A{
key [0] EncryptionKey,
last-req [1] LastReq,
nonce [2] UInt32,
key-expiration [3] KerberosTime OPTIONAL,
flags [4] TicketFlags,
authtime [5] KerberosTime,
starttime [6] KerberosTime OPTIONAL,
endtime [7] KerberosTime,
renew-till [8] KerberosTime OPTIONAL,
srealm [9] Realm,
sname [10] PrincipalName,
caddr [11] HostAddresses OPTIONAL
}
int shishi_tgs (Shishi * handle, Shishi_tgs ** tgs) [Function]
handle: shishi handle as allocated by shishi_init().
tgs: holds pointer to newly allocate Shishi_tgs structure.
Allocate a new TGS exchange variable.
Returns SHISHI_OK iff successful.
void shishi_tgs_done (Shishi_tgs * tgs) [Function]
Deallocate resources associated with AS exchange. This should be called by the
application when it no longer need to utilize the AS exchange handle.
Shishi_tkt * shishi_tgs_tgtkt (Shishi_tgs * tgs) [Function]
tgs: structure that holds information about TGS exchange
Returns the ticket-granting-ticket used in the TGS exchange, or NULL if not yet set
or an error occured.
void shishi_tgs_tgtkt_set (Shishi_tgs * tgs, Shishi_tkt * tgtkt) [Function]

tgs: structure that holds information about TGS exchange
tgtkt: ticket granting ticket to store in TGS.
Set the Ticket in the TGS exchange.

Chapter 5: Programming Manual 74

Shishi_ap * shishi_tgs_ap (Shishi_tgs * tgs) [Function]
tgs: structure that holds information about TGS exchange

Returns the AP exchange (part of TGS-REQ) from the TGS exchange, or NULL if

not yet set or an error occured.

Shishi_asnl shishi_tgs_req (Shishi_tgs * tgs) [Function]
tgs: structure that holds information about TGS exchange

Returns the generated TGS-REQ from the TGS exchange, or NULL if not yet set or
an error occured.

void shishi_tgs_req_set (Shishi_tgs * tgs, Shishi_asnl tgsreq) [Function]
tgs: structure that holds information about TGS exchange

tgsreq: tgsreq to store in TGS.
Set the TGS-REQ in the TGS exchange.

int shishi_tgs_req_der (Shishi_tgs * tgs, char ** out, size_t * [Function]
outlen)
tgs: structure that holds information about TGS exchange

out: output array with newly allocated DER encoding of TGS-REQ.
outlen: length of output array with DER encoding of TGS-REQ.

DER encode TGS-REQ. out is allocated by this function, and it is the responsibility
of caller to deallocate it.

Returns SHISHI_OK iff successful.

int shishi_tgs_req_der_set (Shishi_tgs * tgs, char * der, size_t [Function]
derlen)
tgs: structure that holds information about TGS exchange

der: input array with DER encoded AP-REQ.
derlen: length of input array with DER encoded AP-REQ.

DER decode TGS-REQ and set it TGS exchange. If decoding fails, the TGS-REQ in
the TGS exchange remains.

Returns SHISHI_OK.

int shishi_tgs_req_process (Shishi_tgs * tgs) [Function]
tgs: structure that holds information about TGS exchange

Process new TGS-REQ and set ticket. The key to decrypt the TGS-REQ is taken
from the EncKDCReqPart of the TGS tgticket.

Returns SHISHI_OK iff successful.

int shishi_tgs_req_build (Shishi_tgs * tgs) [Function]
tgs: structure that holds information about TGS exchange

Checksum data in authenticator and add ticket and authenticator to TGS-REQ.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 75

Shishi_asnl shishi_tgs_rep (Shishi_tgs * tgs) [Function]
tgs: structure that holds information about TGS exchange

Returns the received TGS-REP from the TGS exchange, or NULL if not yet set or
an error occured.

int shishi_tgs_rep_der (Shishi_tgs * tgs, char ** out, size_t * [Function]
outlen)
tgs: structure that holds information about TGS exchange

out: output array with newly allocated DER encoding of TGS-REP.
outlen: length of output array with DER encoding of TGS-REP.

DER encode TGS-REP. out is allocated by this function, and it is the responsibility
of caller to deallocate it.

Returns SHISHI_OK iff successful.

int shishi_tgs_rep_process (Shishi_tgs * tgs) [Function]
tgs: structure that holds information about TGS exchange

Process new TGS-REP and set ticket. The key to decrypt the TGS-REP is taken
from the EncKDCRepPart of the TGS tgticket.

Returns SHISHI_OK iff successful.
int shishi_tgs_rep_build (Shishi_tgs * tgs, int keyusage, [Function]

Shishi_key * key)
tgs: structure that holds information about TGS exchange

keyusage: keyusage integer.

key: user’s key, used to encrypt the encrypted part of the TGS-REP.
Build TGS-REP.

Returns SHISHI_OK iff successful.

Shishi_asnl shishi_tgs_krberror (Shishi_tgs * tgs) [Function]
tgs: structure that holds information about TGS exchange

Returns the received TGS-REP from the TGS exchange, or NULL if not yet set or
an error occured.

int shishi_tgs_krberror_der (Shishi_tgs * tgs, char ** out, [Function]
size_t * outlen)
tgs: structure that holds information about TGS exchange

out: output array with newly allocated DER encoding of KRB-ERROR.
outlen: length of output array with DER encoding of KRB-ERROR.

DER encode KRB-ERROR. out is allocated by this function, and it is the responsi-
bility of caller to deallocate it.

Returns SHISHI_OK iff successful.

void shishi_tgs_krberror_set (Shishi_tgs * tgs, Shishi_asnl [Function]
krberror)
tgs: structure that holds information about TGS exchange
krberror: krberror to store in TGS.

Set the KRB-ERROR in the TGS exchange.

Chapter 5: Programming Manual 76

Shishi_tkt * shishi_tgs_tkt (Shishi_tgs * tgs) [Function]
tgs: structure that holds information about TGS exchange

Returns the newly aquired ticket from the TGS exchange, or NULL if not yet set or
an error occured.

void shishi_tgs_tkt_set (Shishi_tgs * tgs, Shishi_tkt * tkt) [Function]
tgs: structure that holds information about TGS exchange

tkt: ticket to store in TGS.
Set the Ticket in the TGS exchange.

int shishi_tgs_sendrecv (Shishi_tgs * tgs) [Function]
tgs: structure that holds information about TGS exchange

Send TGS-REQ and receive TGS-REP or KRB-ERROR. This is the subsequent au-
thentication, usually used to acquire server tickets.

Returns SHISHI_OK iff successful.

int shishi_tgs_set_server (Shishi_tgs * tgs, const char * server) [Function]
tgs: structure that holds information about TGS exchange

server: indicates the server to acquire ticket for.
Set the server in the TGS-REQ.
Returns SHISHI_OK iff successful.

int shishi_tgs_set_realm (Shishi_tgs * tgs, const char * realm) [Function]
tgs: structure that holds information about TGS exchange

realm: indicates the realm to acquire ticket for.
Set the server in the TGS-REQ.
Returns SHISHI_OK iff successful.

int shishi_tgs_set_realmserver (Shishi_tgs * tgs, const char * [Function]
realm, const char * server)
tgs: structure that holds information about TGS exchange

realm: indicates the realm to acquire ticket for.
server: indicates the server to acquire ticket for.
Set the realm and server in the TGS-REQ.
Returns SHISHI_OK iff successful.

5.9 Ticket (ASN.1) Functions

int shishi_ticket_realm_get (Shishi * handle, Shishi_asnl [Function]
ticket, char **x realm, size_t * realmlen)
handle: shishi handle as allocated by shishi_init ().

ticket: input variable with ticket info.

realm: output array with newly allocated name of realm in ticket.
realmlen: size of output array.

Extract realm from ticket.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 7

int shishi_ticket_realm_set (Shishi * handle, Shishi_asnl [Function]
ticket, const char * realm)
handle: shishi handle as allocated by shishi_init ().

ticket: input variable with ticket info.
realm: input array with name of realm.
Set the realm field in the Ticket.
Returns SHISHI_OK iff successful.

int shishi_ticket_sname_set (Shishi * handle, Shishi_asnl [Function]
ticket, Shishi_name_type name_type, char * sname]])
handle: shishi handle as allocated by shishi_init().

ticket: Ticket variable to set server name field in.

name_type: type of principial, see Shishi_name_type, usually SHISHI_ NT_UNKNOWN.}
Set the server name field in the Ticket.

Returns SHISHI_OK iff successful.

int shishi_ticket_get_enc_part_etype (Shishi * handle, [Function]
Shishi_asnl ticket, int32_t * etype)
handle: shishi handle as allocated by shishi_init().

ticket: Ticket variable to get value from.
etype: output variable that holds the value.
Extract Ticket.enc-part.etype.

Returns SHISHI_OK iff successful.

int shishi_ticket_set_enc_part (Shishi * handle, Shishi_asnl [Function]
ticket, int etype, int kvno, char * buf, size_t buflen)
handle: shishi handle as allocated by shishi_init().

ticket: Ticket to add enc-part field to.

etype: encryption type used to encrypt enc-part.
kvno: key version number.

buf: input array with encrypted enc-part.

buflen: size of input array with encrypted enc-part.

Set the encrypted enc-part field in the Ticket. The encrypted data is usually created
by calling shishi_encrypt () on the DER encoded enc-part. To save time, you may
want to use shishi_ticket_add_enc_part () instead, which calculates the encrypted
data and calls this function in one step.

Returns SHISHI_OK iff successful.

int shishi_ticket_add_enc_part (Shishi * handle, Shishi_asnl [Function]
ticket, Shishi_key * key, Shishi_asnl encticketpart)
handle: shishi handle as allocated by shishi_init().

ticket: Ticket to add enc-part field to.
key: key used to encrypt enc-part.

Chapter 5: Programming Manual 78

encticketpart: EncTicketPart to add.
Encrypts DER encoded EncTicketPart using key and stores it in the Ticket.
Returns SHISHI_OK iff successful.

5.10 AS/TGS Functions

The Authentication Service (AS) is used to get an initial ticket using e.g. your password.
The Ticket Granting Service (T'GS) is used to get subsequent tickets using other tickets.
Protocol wise the procedures are very similar, which is the reason they are described to-
gether. The following illustrates the AS-REQ, TGS-REQ and AS-REP, TGS-REP ASN.1
structures. Most of the functions use the mnemonic “KDC” instead of either AS or TGS,
which means the function operates on both AS and TGS types. Only where the distinction
between AS and TGS is important are the AS and TGS names used. Remember, these
are low-level functions, and normal applications will likely be satisfied with the AS (see
Section 5.7 [AS Functions|, page 67) and TGS (see Section 5.8 [TGS Functions|, page 72)
interfaces, or the even more high-level Ticket Set (see Section 5.3 [Ticket Set Functions],
page 32) interface.

-- Request —-

AS-REQ = KDC-REQ {10}

TGS-REQ = KDC-REQ {12}

KDC-REQ {INTEGER:tagnum} ::= [APPLICATION tagnum] SEQUENCE {
pvno [1] INTEGER (5) -- first tag is [1], not [0] --,
msg-type [2] INTEGER (tagnum),
padata [3] SEQUENCE OF PA-DATA OPTIONAL,
req-body [4] KDC-REQ-BODY

}

KDC-REQ-BODY ::= SEQUENCE {
kdc-options [0] KDCOptions,
cname [1] PrincipalName OPTIONAL

-- Used only in AS-REQ --,
realm [2] Realm
-- Server’s realm
-- Also client’s in AS-REQ --,
Sname [3] PrincipalName OPTIONAL,
from [4] KerberosTime OPTIONAL,
till [56] KerberosTime,
rtime [6] KerberosTime OPTIONAL,
nonce [7] UInt32,
etype [8] SEQUENCE OF Int32 -- EncryptionType
-- in preference order --,
addresses [9] HostAddresses OPTIONAL,

enc-authorization-data [10] EncryptedData {
AuthorizationData,

Chapter 5: Programming Manual

additional-tickets

-- Reply --

AS-REP
TGS-REP

KDC-REP {INTEGER:tagnum,
TypeToEncrypt,

UInt32:KeyUsages}

79

{ keyuse-TGSRegAuthData-sesskey
| keyuse-TGSReqAuthData-subkey }

} OPTIONAL,

[11] SEQUENCE OF Ticket OPTIONAL

keyuse-EncTGSRepPart-subkey }}

::= [APPLICATION tagnum] SEQUENCE {

KDC-REP {11, EncASRepPart, {keyuse-EncASRepPart}}
KDC-REP {13, EncTGSRepPart,
{ keyuse-EncTGSRepPart-sesskey

pvno [0] INTEGER (5),

msg-type [1] INTEGER (tagnum),

padata [2] SEQUENCE OF PA-DATA OPTIONAL,

crealm [3] Realm,

cname [4] PrincipalName,

ticket [5] Ticket,

enc-part [6] EncryptedData {TypeToEncrypt, KeyUsages}
}
EncASRepPart = [APPLICATION 25] EncKDCRepPart
EncTGSRepPart = [APPLICATION 26] EncKDCRepPart
EncKDCRepPart = SEQUENCE {

key [0] EncryptionKey,

last-req [1] LastReq,

nonce [2] UInt32,

key-expiration [3] KerberosTime OPTIONAL,

flags [4] TicketFlags,

authtime [5] KerberosTime,

starttime [6] KerberosTime OPTIONAL,

endtime [7] KerberosTime,

renew-till [8] KerberosTime OPTIONAL,

srealm [9] Realm,

sname [10] PrincipalName,

caddr [11] HostAddresses OPTIONAL
}

int shishi_as_derive_salt (Shishi * handle, Shishi_asnl asreq,
Shishi_asnl asrep, char * salt, size_t * saltlen)
handle: shishi handle as allocated by shishi_init ().

asreq: input AS-REQ variable.

[Function]

Chapter 5: Programming Manual 80

asrep: input AS-REP variable.
salt: output array with salt.

saltlen: on input, maximum size of output array with salt, on output, holds actual
size of output array with salt.

Derive the salt that should be used when deriving a key via shishi_string_
to_key() for an AS exchange. Currently this searches for PA-DATA of type
SHISHI_PA_PW_SALT in the AS-REP and returns it if found, otherwise the salt is
derived from the client name and realm in AS-REQ.

Returns SHISHI_OK iff successful.

int shishi_kdc_copy-_crealm (Shishi * handle, Shishi_asni [Function]
kdcrep, Shishi_asnl encticketpart)
handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to read crealm from.
encticketpart: EncTicketPart to set crealm in.

Set crealm in KDC-REP to value in EncTicketPart.
Returns SHISHI_OK if successful.

int shishi_as_check_crealm (Shishi * handle, Shishi_asnl asreq, [Function]
Shishi_asnl asrep)
handle: shishi handle as allocated by shishi_init().

asreq: AS-REQ to compare realm field in.

asrep: AS-REP to compare realm field in.

Verify that AS-REQ.req-body.realm and AS-REP.crealm fields matches. This is one
of the steps that has to be performed when processing a AS-REQ and AS-REP
exchange, see shishi_kdc_process().

Returns SHISHI_OK if successful, SHISHI_ REALM_MISMATCH if the values differ,

or an error code.

int shishi_kdc_copy_cname (Shishi * handle, Shishi_asnl [Function]
kdcrep, Shishi_asnl encticketpart)
handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REQ to read cname from.
encticketpart: EncTicketPart to set cname in.

Set cname in KDC-REP to value in EncTicketPart.
Returns SHISHI_OK if successful.

int shishi_as_check_cname (Shishi * handle, Shishi_asnl asreq, [Function]
Shishi_asnl asrep)

handle: shishi handle as allocated by shishi_init().
asreq: AS-REQ to compare client name field in.
asrep: AS-REP to compare client name field in.
Verify that AS-REQ.req-body.realm and AS-REP.crealm fields matches. This is one
of the steps that has to be performed when processing a AS-REQ and AS-REP
exchange, see shishi_kdc_process().

Chapter 5: Programming Manual 81

Returns SHISHI_OK if successful, SHISHI_.CNAME_MISMATCH if the values differ,

or an error code.

int shishi_kdc_copy_nonce (Shishi * handle, Shishi_asnl kdcreq, [Function]
Shishi_asnl enckdcreppart)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to read nonce from.
enckdcreppart: EncKDCRepPart to set nonce in.

Set nonce in EncKDCRepPart to value in KDC-REQ.
Returns SHISHI_OK if successful.

int shishi_kdc_check_nonce (Shishi * handle, Shishi_asnl [Function]
kdcreq, Shishi_asnl enckdcreppart)
handle: shishi handle as allocated by shishi_init ().

kdcreq: KDC-REQ to compare nonce field in.
enckdcreppart: Encrypted KDC-REP part to compare nonce field in.

Verify that KDC-REQ.req-body.nonce and EncKDCRepPart.nonce fields matches.
This is one of the steps that has to be performed when processing a KDC-REQ and
KDC-REP exchange.

Returns SHISHI_OK if successful, SHISHI_ NONCE_LENGTH_MISMATCH if the
nonces have different lengths (usually indicates that buggy server truncated nonce to
4 bytes), SHISHI._NONCE_MISMATCH if the values differ, or an error code.

int shishi_tgs_process (Shishi * handle, Shishi_asnl tgsreq, [Function]
Shishi_asnl tgsrep, Shishi_asnl authenticator, Shishi_asnl
oldenckdcreppart, Shishi_asnl * enckdcreppart)
handle: shishi handle as allocated by shishi_init ().

tgsreq: input variable that holds the sent KDC-REQ.

tgsrep: input variable that holds the received KDC-REP.

authenticator: input variable with Authenticator from AP-REQ in KDC-REQ.
oldenckdcreppart: input variable with EncKDCRepPart used in request.
enckdcreppart: output variable that holds new EncKDCRepPart.

Process a TGS client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. This function simply derives the encryption key
from the ticket used to construct the TGS request and calls shishi_kdc_process(),
which see.

Returns SHISHI_OK iff the TGS client exchange was successful.

int shishi_as_process (Shishi * handle, Shishi_asnl asreq, [Function]
Shishi_asnl asrep, const char * string, Shishi_asnl * enckdcreppart)
handle: shishi handle as allocated by shishi_init ().

asreq: input variable that holds the sent KDC-REQ.
asrep: input variable that holds the received KDC-REP.

string: input variable with zero terminated password.

Chapter 5: Programming Manual 82

enckdcreppart: output variable that holds new EncKDCRepPart.

Process an AS client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. This function simply derives the encryption key
from the password and calls shishi_kdc_process(), which see.

Returns SHISHI_OK iff the AS client exchange was successful.

int shishi_kdc_process (Shishi * handle, Shishi_asnl kdcregq, [Function]
Shishi_asnl kdcrep, Shishi_key * key, int keyusage, Shishi_asnl *
enckdcreppart)

handle: shishi handle as allocated by shishi_init().

kdcreq: input variable that holds the sent KDC-REQ.

kdcrep: input variable that holds the received KDC-REP.

key: input array with key to decrypt encrypted part of KDC-REP with.
keyusage: kereros key usage value.

enckdcreppart: output variable that holds new EncKDCRepPart.

Process a KDC client exchange and output decrypted EncKDCRepPart which holds
details for the new ticket received. Use shishi_kdcrep_get_ticket() to extract the
ticket. This function verifies the various conditions that must hold if the response
is to be considered valid, specifically it compares nonces (shishi_check_nonces())
and if the exchange was a AS exchange, it also compares cname and crealm (shishi_
check_cname () and shishi_check_crealm()).

Usually the shishi_as_process() and shishi_tgs_process() functions should be
used instead, since they simplify the decryption key computation.

Returns SHISHI_OK iff the KDC client exchange was successful.

Shishi_asnl shishi_asreq (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init ().

This function creates a new AS-REQ, populated with some default values.
Returns the AS-REQ or NULL on failure.

Shishi_asnl shishi_tgsreq (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init ().

This function creates a new TGS-REQ), populated with some default values.
Returns the TGS-REQ or NULL on failure.

int shishi_kdcreq_print (Shishi * handle, FILE * fh, Shishi_asnl [Function]
kdcreq)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for writing.

kdcreq: KDC-REQ to print.

Print ASCII armored DER encoding of KDC-REQ to file.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 83

int shishi_kdcreq_save (Shishi * handle, FILE * fh, Shishi_asnl [Function]
kdcreq)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for writing.

kdcreq: KDC-REQ to save.

Print DER encoding of KDC-REQ to file.
Returns SHISHI_OK iff successful.

int shishi_kdcreq_to_file (Shishi * handle, Shishi_asnl kdcreq, [Function]
int filetype, char * filename)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write KDC-REQ to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI_OK iff successful.

int shishi_kdcreq_parse (Shishi * handle, FILE * fh, Shishi_asnl [Function]
* kdcreq)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for reading.

kdcreq: output variable with newly allocated KDC-REQ).

Read ASCII armored DER encoded KDC-REQ from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_kdcreq_read (Shishi * handle, FILE * fh, Shishi_asnl * [Function]
kdcreq)
handle: shishi handle as allocated by shishi_init().

fh: file handle open for reading.

kdcreq: output variable with newly allocated KDC-REQ.

Read DER encoded KDC-REQ from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_kdcreq_from_file (Shishi * handle, Shishi_asnl * [Function]
kdcreq, int filetype, char * filename)
handle: shishi handle as allocated by shishi_init ().

kdcreq: output variable with newly allocated KDC-REQ).

filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read KDC-REQ from file in specified TYPE.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 84

int shishi_kdcreq_set_cname (Shishi * handle, Shishi_asnl [Function]
kdcreq, Shishi_name_type name_type, const char * principal)
handle: shishi handle as allocated by shishi_init ().

kdcreq: KDC-REQ variable to set client name field in.

name_type: type of principial, see Shishi_name_type, usually SHISHI_ NT_UNKNOWN.}
principal: input array with principal name.

Set the client name field in the KDC-REQ.

Returns SHISHI_OK iff successful.

int shishi_kdcreq_set_realm (Shishi * handle, Shishi_asni [Function]
kdcreq, const char * realm)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set realm field in.
realm: input array with name of realm.

Set the realm field in the KDC-REQ.

Returns SHISHI_OK iff successful.

int shishi_kdcreq_set_sname (Shishi * handle, Shishi_asnl [Function]
kdcreq, Shishi_name_type name_type, const char * sname]])
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set server name field in.

name_type: type of principial, see Shishi_name_type, usually SHISHI_ NT_UNKNOWN.J
Set the server name field in the KDC-REQ.

Returns SHISHI_OK iff successful.

int shishi_kdcreq_etype (Shishi * handle, Shishi_asnl kdcreq, [Function]
int32_t * etype, int netype)
handle: shishi handle as allocated by shishi_init ().

kdcreq: KDC-REQ variable to get etype field from.

etype: output encryption type.

netype: element number to return.

th encryption type from KDC-REQ. The first etype is number 1.
Returns SHISHI_OK iff etype successful set.

int shishi_kdcreq_set_etype (Shishi * handle, Shishi_asni [Function]
kdcreq, int32_t * etype, int netype)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set etype field in.
etype: input array with encryption types.
netype: number of elements in input array with encryption types.

Set the list of supported or wanted encryption types in the request. The list should
be sorted in priority order.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 85

int shishi_kdcreq_options (Shishi * handle, Shishi_asnl kdcreq, [Function]
uint32_t * flags)
handle: shishi handle as allocated by shishi_init ().

kdcreq: KDC-REQ variable to set etype field in.
flags: pointer to output integer with flags.
Extract KDC-Options from KDC-REQ.
Returns SHISHI_OK iff successful.

int shishi_kdcreq-renewable_p (Shishi * handle, Shishi_asnl [Function]
kdcreq)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set etype field in.
Determine if KDC-Option renewable flag is set.

The RENEWABLE option indicates that the ticket to be issued is to have its RENEW-
ABLE flag set. It may only be set on the initial request, or when the ticket-granting
ticket on which the request is based is also renewable. If this option is requested,
then the rtime field in the request contains the desired absolute expiration time for
the ticket.

Returns non-0 iff renewable flag is set in KDC-REQ.

int shishi_kdcreq_options_set (Shishi * handle, Shishi_asnl [Function]
kdcreq, uint32_t options)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set etype field in.

options: integer with flags to store in KDC-REQ.

Set options in KDC-REQ. Note that this reset any already existing flags.
Returns SHISHI_OK iff successful.

int shishi_kdcreq_options_add (Shishi * handle, Shishi_asni [Function]
kdcreq, uint32_t option)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ variable to set etype field in.

option: integer with options to add in KDC-REQ.

Add KDC-Option to KDC-REQ. This preserves all existing options.
Returns SHISHI_OK iff successful.

int shishi_kdcreq-_clear_padata (Shishi * handle, Shishi_asnl [Function]
kdcreq)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to remove PA-DATA from.
Remove the padata field from KDC-REQ.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 86

int shishi_kdcreq_get_padata (Shishi * handle, Shishi_asnl [Function]
kdcreq, Shishi_padata_type padatatype, char ** out, size_t * outlen)
handle: shishi handle as allocated by shishi_init ().

kdcreq: KDC-REQ to get PA-DATA from.

padatatype: type of PA-DATA, see Shishi_padata_type.
out: output array with newly allocated PA-DATA value.
outlen: size of output array with PA-DATA value.

Get pre authentication data (PA-DATA) from KDC-REQ. Pre authentication data is
used to pass various information to KDC, such as in case of a SHISHI_PA_TGS_REQ
padatatype the AP-REQ that authenticates the user to get the ticket.

Returns SHISHI_OK iff successful.

int shishi_kdcreq_get_padata_tgs (Shishi * handle, Shishi_asnl [Function]
kdcreq, Shishi_asnl * apreq)
handle: shishi handle as allocated by shishi_init ().

kdcreq: KDC-REQ to get PA-TGS-REQ from.
apreq: Output variable with newly allocated AP-REQ.

Extract TGS pre-authentication data from KDC-REQ. The data is an AP-REQ that
authenticates the request. This function call shishi_kdcreq_get_padata() with a
SHISHI_PA_TGS_REQ padatatype and DER decode the result (if any).

Returns SHISHI_OK iff successful.

int shishi_kdcreq_add_padata (Shishi * handle, Shishi_asnl [Function]
kdcreq, int padatatype, const char * data, size_t datalen)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to add PA-DATA to.

padatatype: type of PA-DATA, see Shishi_padata_type.
data: input array with PA-DATA value.

datalen: size of input array with PA-DATA value.

Add new pre authentication data (PA-DATA) to KDC-REQ. This is used to pass
various information to KDC, such as in case of a SHISHI_PA_TGS_REQ padatatype
the AP-REQ that authenticates the user to get the ticket. (But also see shishi_
kdcreq_add_padata_tgs() which takes an AP-REQ directly.)

Returns SHISHI_OK iff successful.

int shishi_kdcreq_add_padata_tgs (Shishi * handle, Shishi_asnl [Function]
kdcreq, Shishi_asnl apreq)
handle: shishi handle as allocated by shishi_init().

kdcreq: KDC-REQ to add PA-DATA to.
apreq: AP-REQ to add as PA-DATA.

Add TGS pre-authentication data to KDC-REQ. The data is an AP-REQ that au-
thenticates the request. This functions simply DER encodes the AP-REQ and calls
shishi_kdcreq_add_padata() with a SHISHI_.PA_TGS_REQ padatatype.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 87

Shishi_asnl shishi_asrep (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init().

This function creates a new AS-REP, populated with some default values.
Returns the AS-REP or NULL on failure.

Shishi_asnl shishi_tgsrep (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init ().

This function creates a new TGS-REP, populated with some default values.
Returns the TGS-REP or NULL on failure.

int shishi_kdcrep_print (Shishi * handle, FILE * fh, Shishi_asnl [Function]
kdcrep)
handle: shishi handle as allocated by shishi_init().

th: file handle open for writing.

kdcrep: KDC-REP to print.

Print ASCII armored DER encoding of KDC-REP to file.
Returns SHISHI_OK iff successful.

int shishi_kdcrep_save (Shishi * handle, FILE * fh, Shishi_asnl [Function]
kdcrep)
handle: shishi handle as allocated by shishi_init().

th: file handle open for writing.

kdcrep: KDC-REP to save.

Print DER encoding of KDC-REP to file.
Returns SHISHI_OK iff successful.

int shishi_kdcrep_to_file (Shishi * handle, Shishi_asnl kdcrep, [Function]
int filetype, char * filename)
handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write KDC-REP to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI_OK iff successful.

int shishi_kdcrep_parse (Shishi * handle, FILE * fh, Shishi_asni [Function]
* kdcrep)
handle: shishi handle as allocated by shishi_init ().

fh: file handle open for reading.

kdcrep: output variable with newly allocated KDC-REP.

Read ASCII armored DER. encoded KDC-REP from file and populate given variable.
Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 88

int shishi_kdcrep_read (Shishi * handle, FILE * fh, Shishi_asnl * [Function]
kdcrep)
handle: shishi handle as allocated by shishi_init ().

fh: file handle open for reading.

kdcrep: output variable with newly allocated KDC-REP.

Read DER encoded KDC-REP from file and populate given variable.
Returns SHISHI_OK iff successful.

int shishi_kdcrep_from_file (Shishi * handle, Shishi_asnl * [Function]
kdcrep, int filetype, char * filename)
handle: shishi handle as allocated by shishi_init ().

kdcrep: output variable with newly allocated KDC-REP.

filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read KDC-REP from file in specified TYPE.

Returns SHISHI_OK iff successful.

int shishi_kdcrep_crealm_set (Shishi * handle, Shishi_asni [Function]
kdcrep, const char * crealm)
handle: shishi handle as allocated by shishi_init().

kdcrep: Kdcrep variable to set realm field in.
crealm: input array with name of realm.

Set the client realm field in the KDC-REP.
Returns SHISHI_OK iff successful.

int shishi_kdcrep_cname_set (Shishi * handle, Shishi_asni [Function]
kdcrep, Shishi_name_type name_type, const char * cnamel])
handle: shishi handle as allocated by shishi_init ().

kdcrep: Kdcrep variable to set server name field in.

name_type: type of principial, see Shishi_name_type, usually SHISHI_ NT_UNKNOWN.}
Set the server name field in the KDC-REP.

Returns SHISHI_OK iff successful.

int shishi_kdcrep_client_set (Shishi * handle, Shishi_asnl [Function]
kdcrep, const char * client)
handle: shishi handle as allocated by shishi_init ().

kdcrep: Kdcrep variable to set server name field in.

client: zero-terminated string with principal name on RFC 1964 form.
Set the client name field in the KDC-REP.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 89

int shishi_kdcrep_get_enc_part_etype (Shishi * handle, [Function]
Shishi_asnl kdcrep, int32_t * etype)
handle: shishi handle as allocated by shishi_init ().

kdcrep: KDC-REP variable to get value from.
etype: output variable that holds the value.
Extract KDC-REP.enc-part.etype.

Returns SHISHI_OK iff successful.

int shishi_kdcrep_get_ticket (Shishi * handle, Shishi_asnl [Function]
kdcrep, Shishi_asnl * ticket)
handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP variable to get ticket from.
ticket: output variable to hold extracted ticket.
Extract ticket from KDC-REP.

Returns SHISHI_OK iff successful.

int shishi_kdcrep_set_ticket (Shishi * handle, Shishi_asnl [Function]
kdcrep, Shishi_asnl ticket)
handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to add ticket field to.

ticket: input ticket to copy into KDC-REP ticket field.
Copy ticket into KDC-REP.

Returns SHISHI_OK iff successful.

int shishi_kdcrep_set_enc_part (Shishi * handle, Shishi_asni [Function]
kdcrep, int etype, int kvno, const char * buf, size_t buflen)
handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to add enc-part field to.

etype: encryption type used to encrypt enc-part.
kvno: key version number.

buf: input array with encrypted enc-part.

buflen: size of input array with encrypted enc-part.

Set the encrypted enc-part field in the KDC-REP. The encrypted data is usually
created by calling shishi_encrypt() on the DER encoded enc-part. To save time,
you may want to use shishi_kdcrep_add_enc_part() instead, which calculates the
encrypted data and calls this function in one step.

Returns SHISHI_OK iff successful.

int shishi_kdcrep_add_enc_part (Shishi * handle, Shishi_asnl [Function]
kdcrep, Shishi_key * key, int keyusage, Shishi_asnl enckdcreppart)
handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to add enc-part field to.
key: key used to encrypt enc-part.

Chapter 5: Programming Manual 90

keyusage: key usage to use, normally SHISHI. KEYUSAGE_ENCASREPPART,
SHISHI_KEYUSAGE_ENCTGSREPPART_SESSION_KEY or SHISHI_ KEYUSAGE_ENCTGSREPPA

enckdcreppart: EncKDCRepPart to add.
Encrypts DER encoded EncKDCRepPart using key and stores it in the KDC-REP.
Returns SHISHI_OK iff successful.

int shishi_kdcrep_clear_padata (Shishi * handle, Shishi_asnl [Function]
kdcrep)
handle: shishi handle as allocated by shishi_init().

kdcrep: KDC-REP to remove PA-DATA from.
Remove the padata field from KDC-REP.
Returns SHISHI_OK iff successful.

int shishi_enckdcreppart_get_key (Shishi * handle, Shishi_asnl [Function]
enckdcreppart, Shishi_key ** key)
handle: shishi handle as allocated by shishi_init ().

enckdcreppart: input EncKDCRepPart variable.
key: newly allocated encryption key handle.

Extract the key to use with the ticket sent in the KDC-REP associated with the
EndKDCRepPart input variable.

Returns SHISHI_OK iff succesful.

int shishi_enckdcreppart_key_set (Shishi * handle, Shishi_asni [Function]
enckdcreppart, Shishi_key * key)
handle: shishi handle as allocated by shishi_init ().

enckdcreppart: input EncKDCRepPart variable.

key: key handle with information to store in enckdcreppart.

Set the EncKDCRepPart.key field to key type and value of supplied key.
Returns SHISHI_OK iff succesful.

int shishi_enckdcreppart_nonce_set (Shishi * handle, [Function]
Shishi_asnl enckdcreppart, uint32_t nonce)
handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.
nonce: nonce to set in EncKDCRepPart.

Set the EncKDCRepPart.nonce field.

Returns SHISHI_OK iff succesful.

int shishi_enckdcreppart_flags_set (Shishi * handle, [Function]
Shishi_asnl enckdcreppart, int flags)
handle: shishi handle as allocated by shishi_init().

enckdcreppart: input EncKDCRepPart variable.
flags: flags to set in EncKDCRepPart.

Set the EncKDCRepPart.flags field.

Returns SHISHI_OK iff succesful.

Chapter 5: Programming Manual 91

int shishi_enckdcreppart_populate_encticketpart (Shishi * [Function]
handle, Shishi_asnl enckdcreppart, Shishi_asnl encticketpart)
handle: shishi handle as allocated by shishi_init ().

enckdcreppart: input EncKDCRepPart variable.
encticketpart: input EncTicketPart variable.

Set the flags, authtime, starttime, endtime, renew-till and caddr fields of the EncK-
DCRepPart to the corresponding values in the EncTicketPart.

Returns SHISHI_OK iff succesful.

int shishi_enckdcreppart_srealm_set (Shishi * handle, [Function]
Shishi_asnl enckdcreppart, const char * srealm)
handle: shishi handle as allocated by shishi_init().

enckdcreppart: EncKDCRepPart variable to set realm field in.
srealm: input array with name of realm.

Set the server realm field in the EncKDCRepPart.

Returns SHISHI_OK iff successful.

int shishi_enckdcreppart_sname_set (Shishi * handle, [Function]
Shishi_asnl enckdcreppart, Shishi_name_type name_type, char * snamel])

handle: shishi handle as allocated by shishi_init ().

enckdcreppart: EncKDCRepPart variable to set server name field in.

name_type: type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.J
Set the server name field in the EncKDCRepPart.

Returns SHISHI_OK iff successful.

5.11 Authenticator Functions

An “Authenticator” is a ASN.1 structure that work as a proof that an entity owns a
ticket. It is usually embedded in the AP-REQ structure (see Section 5.4 [AP-REQ and
AP-REP Functions|, page 37), and you most likely want to use an AP-REQ instead of a
Authenticator in normal applications. The following illustrates the Authenticator ASN.1
structure.

Authenticator ::= [APPLICATION 2] SEQUENCE {
authenticator-vno [0] INTEGER (5),
crealm [1] Realm,
cname [2] PrincipalName,
cksum [3] Checksum OPTIONAL,
cusec [4] Microseconds,
ctime [6] KerberosTime,
subkey [6] EncryptionKey OPTIONAL,
seq-number [7] UInt32 OPTIONAL,
authorization-data [8] AuthorizationData OPTIONAL

Chapter 5: Programming Manual 92

Shishi_asnl shishi_authenticator (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init().

This function creates a new Authenticator, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields.

Returns the authenticator or NULL on failure.

Shishi_asnl shishi_authenticator_subkey (Shishi * handle) [Function]
handle: shishi handle as allocated by shishi_init ().

This function creates a new Authenticator, populated with some default values. It
uses the current time as returned by the system for the ctime and cusec fields. It
adds a random subkey.

Returns the authenticator or NULL on failure.

int shishi_authenticator_print (Shishi * handle, FILE * fh, [Function]
Shishi_asnl authenticator)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for writing.

authenticator: authenticator as allocated by shishi_authenticator().
Print ASCII armored DER encoding of authenticator to file.

Returns SHISHI_OK iff successful.

int shishi_authenticator_save (Shishi * handle, FILE * fh, [Function]
Shishi_asnl authenticator)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for writing.

authenticator: authenticator as allocated by shishi_authenticator().
Save DER encoding of authenticator to file.

Returns SHISHI_OK iff successful.

int shishi_authenticator_to_file (Shishi * handle, Shishi_asnl [Function]
authenticator, int filetype, char * filename)
handle: shishi handle as allocated by shishi_init ().

authenticator: Authenticator to save.

filetype: input variable specifying type of file to be written, see Shishi_filetype.
filename: input variable with filename to write to.

Write Authenticator to file in specified TYPE. The file will be truncated if it exists.
Returns SHISHI_OK iff successful.

int shishi_authenticator_parse (Shishi * handle, FILE * fh, [Function]
Shishi_asnl * authenticator)
handle: shishi handle as allocated by shishi_init().

th: file handle open for reading.
authenticator: output variable with newly allocated authenticator.

Read ASCII armored DER encoded authenticator from file and populate given au-
thenticator variable.

Returns SHISHI_OK iff successful.

Chapter 5: Programming Manual 93

int shishi_authenticator_read (Shishi * handle, FILE * fh, [Function]
Shishi_asnl * authenticator)
handle: shishi handle as allocated by shishi_init ().

th: file handle open for reading.
authenticator: output variable with newly allocated authenticator.

Read DER encoded authenticator from file and populate given authenticator variable.
Returns SHISHI_OK iff successful.

int shishi_authenticator_from_file (Shishi * handle, Shishi_asnl [Function]
* authenticator, int filetype, char x filename)
handle: shishi handle as allocated by shishi_init ().

authenticator: output variable with newly allocated Authenticator.
filetype: input variable specifying type of file to be read, see Shishi_filetype.
filename: input variable with filename to read from.

Read Authenticator from file in specified TYPE.

Returns SHISHI_OK iff successful.

int shishi_authenticator_set_crealm (Shishi * handle, [Function]
Shishi_asnl authenticator, const char * crealm)
handle: shishi handle as allocated by shishi_init ().

authenticator: authenticator as allocated by shishi_authenticator().
crealm: input array with realm.

Set realm field in authenticator to specified value.

Returns SHISHI_OK iff successful.

int shishi_authenticator_set_cname (Shishi * handle, [Function]
Shishi_asnl authenticator, Shishi_name_type name_type, const char *
cnamel])

handle: shishi handle as allocated by shishi_init ().

authenticator: authenticator as allocated by shishi_authenticator().

name_type: type of principial, see Shishi_name_type, usually SHISHI_NT_UNKNOWN.}}
Set principal field in authenticator to specified value.

Returns SHISHI_OK iff successful.

int shishi_authenticator_client_set (Shishi * handle, [Function]
Shishi_asnl authenticator, const char * client)
handle: shishi handle as allocated by shishi_init ().

authenticator: Authenticator to set client name field in.

client: zero-terminated string wi