
Libtasn1
Abstract Syntax Notation One (ASN.1) library for the GNU system

part of the GnuTLS project
for version 0.3.5, 11 February 2006

Fabio Fiorina
Simon Josefsson (bug-gnutls@gnu.org)

mailto:bug-gnutls@gnu.org

This manual is for Libtasn1 (version 0.3.5, 11 February 2006), which is a library for Abstract
Syntax Notation One (ASN.1) and Distinguish Encoding Rules (DER) manipulation.
Copyright c© 2004, 2006 Free Software Foundation
Copyright c© 2001, 2002, 2003 Fabio Fiorina

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Table of Contents

1 ASN.1 structure handling 1
1.1 ASN.1 syntax . 1
1.2 Naming. 2
1.3 Library Notes . 3
1.4 Future developments. 3

2 Utilities . 4
2.1 Invoking asn1Parser . 4
2.2 Invoking asn1Coding . 4
2.3 Invoking asn1Decoding . 4

3 Function reference . 6
3.1 ASN.1 schema functions . 6
3.2 ASN.1 field functions . 7
3.3 DER functions . 11
3.4 Error handling functions . 15
3.5 Auxilliary functions . 16

Appendix A Copying This Manual 17
A.1 GNU Free Documentation License . 17

A.1.1 ADDENDUM: How to use this License for your documents
. 23

Concept Index . 24

Function and Data Index . 25

Chapter 1: ASN.1 structure handling 1

1 ASN.1 structure handling

This document describes the Libtasn1 library developed for ASN.1 (Abstract Syntax No-
tation One) structures management.

The main features of this library are:
• On line ASN1 structure management that doesn’t require any C code file generation.
• Off line ASN1 structure management with C code file generation containing an array.
• DER (Distinguish Encoding Rules) encoding.
• No limits for INTEGER and ENUMERATED values.
• It’s Free Software. Anybody can use, modify, and redistribute the library under the

terms of the GNU Lesser General Public License.
• It’s thread-safe. No global variables are used and multiple library handles and session

handles may be used in parallel.
• It’s portable. It should work on all Unix like operating systems, including Windows.

The library itself should be portable to any C89 system, not even POSIX is required.

1.1 ASN.1 syntax

The parser is case sensitive. The comments begin with "– " and end at the end of lines.
An example is in "pkix.asn" file. ASN.1 definitions must have this syntax:

definitions_name {<object definition>}

DEFINITIONS <EXPLICIT or IMPLICIT> TAGS ::=

BEGIN

<type and constants definitions>

END

The token "::=" must be separate from others elements, so this is a wrong declaration:
;; INCORRECT
Version ::=INTEGER

the correct form is:
Version ::= INTEGER

Here is the list of types that the parser can manage:
• INTEGER
• ENUMERATED
• BOOLEAN
• OBJECT IDENTIFIER
• NULL
• BIT STRING
• OCTET STRING

Chapter 1: ASN.1 structure handling 2

• UTCTime
• GeneralizedTime
• GeneralString
• SEQUENCE
• SEQUENCE OF
• SET
• SET OF
• CHOICE
• ANY
• ANY DEFINED BY

This version doesn’t manage REAL type. It doesn’t allow the "EXPORT" and "IM-
PORT" sections too.

The SIZE constraints are allowed, but no check is done on them.

1.2 Naming

Consider this definition:

Example { 1 2 3 4 }

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

Group ::= SEQUENCE {
id OBJECT IDENTIFIER,
value Value

}

Value ::= SEQUENCE {
value1 INTEGER,
value2 BOOLEAN

}

END

To identify the type ’Group’ you have to use the null terminated string
"Example.Group". These strings are used in functions that are described below.

Others examples:

Field ’id’ in ’Group’ type : "Example.Group.id".

Field ’value1’ in field ’value’ in type ’Group’: "Example.Group.value.value1".

Elements of structured types that don’t have a name, receive the name "?1","?2", and
so on.

The name "?LAST" indicates the last element of a SET_OF or SEQUENCE_OF.

Chapter 1: ASN.1 structure handling 3

1.3 Library Notes

The header file of this library is ‘libtasn1.h’.
The main type used in it is ASN1_TYPE, and it’s used to store the ASN.1 definitions and

structures (instances).
The constant ASN1 TYPE EMPTY can be used for the variable initialization. For ex-

ample:
ASN1_TYPE definitions=ASN1_TYPE_EMPTY;

Some functions require a parameter named errorDescription of char* type. The array
must be already allocated and must have at least MAX_ERROR_DESCRIPTION_SIZE bytes (E.g,
as in char Description[MAX_ERROR_DESCRIPTION_SIZE];).

MAX_NAME_SIZE indicates the maximum number of characters of a name inside a file with
ASN1 definitions.

1.4 Future developments

• Add functions for a C code file generation containing equivalent data structures (not a
single array like now).

• Type REAL.

Chapter 2: Utilities 4

2 Utilities

2.1 Invoking asn1Parser

‘asn1Parser’ reads one file with ASN1 definitions and generates a file with an array to use
with libtasn1 functions.
Usage: asn1Parser [options] file

Options:
-h : shows the help message.
-v : shows version information and exit.
-c : checks the syntax only.
-o file : output file.
-n name : array name.

2.2 Invoking asn1Coding

‘asn1Coding’ generates a DER encoding from a file with ASN1 definitions and another one
with assignments.

The file with assignments must have this syntax:
InstanceName Asn1Definition

nameString value

nameString value
...

The output file is a binary file with the DER encoding.
Usage: asn1Coding [options] file1 file2
file1 : file with ASN1 definitions.
file2 : file with assignments.
Options:
-h : shows the help message.
-v : shows version information and exit.
-c : checks the syntax only.
-o file : output file.

2.3 Invoking asn1Decoding

‘asn1Decoding’ generates an ASN1 structure from a file with ASN1 definitions and a binary
file with a DER encoding.
Usage: asn1Decoding [options] file1 file2 type
file1 : file with ASN1 definitions.
file2 : binary file with a DER encoding.
type : ASN1 definition name.
Options:
-h : shows the help message.

Chapter 2: Utilities 5

-v : shows version information and exit.
-c : checks the syntax only.
-o file : output file.

Chapter 3: Function reference 6

3 Function reference

3.1 ASN.1 schema functions

[Function]asn1_retCode asn1_parser2tree (const char * file_name,
ASN1 TYPE * definitions, char * errorDescription)

file name: specify the path and the name of file that contains ASN.1 declarations.

definitions: return the pointer to the structure created from "file name" ASN.1 dec-
larations.

errorDescription: return the error description or an empty string if success.

Creates the structures needed to manage the definitions included in *FILE NAME
file.

Returns: ASN1 SUCCESS: The file has a correct syntax and every identifier is known.

ASN1 ELEMENT NOT EMPTY: *POINTER not ASN1 TYPE EMPTY.

ASN1 FILE NOT FOUND: An error occured while opening FILE NAME.

ASN1 SYNTAX ERROR: The syntax is not correct.

ASN1 IDENTIFIER NOT FOUND: In the file there is an identifier that is not de-
fined.

ASN1 NAME TOO LONG: In the file there is an identifier whith more than
MAX NAME SIZE characters.

[Function]int asn1_parser2array (const char * inputFileName, const char *
outputFileName, const char * vectorName, char * errorDescription)

inputFileName: specify the path and the name of file that contains ASN.1 declara-
tions.

outputFileName: specify the path and the name of file that will contain the C vector
definition.

vectorName: specify the name of the C vector.

errorDescription: return the error description or an empty string if success.

Creates a file containing a C vector to use to manage the definitions included in
*INPUTFILENAME file. If *INPUTFILENAME is "/aa/bb/xx.yy" and OUTPUT-
FILENAME is NULL, the file created is "/aa/bb/xx asn1 tab.c". If VECTORNAME
is NULL the vector name will be "xx asn1 tab".

Returns: ASN1 SUCCESS: The file has a correct syntax and every identifier is known.

ASN1 FILE NOT FOUND: An error occured while opening FILE NAME.

ASN1 SYNTAX ERROR: The syntax is not correct.

ASN1 IDENTIFIER NOT FOUND: In the file there is an identifier that is not de-
fined.

ASN1 NAME TOO LONG: In the file there is an identifier whith more than
MAX NAME SIZE characters.

Chapter 3: Function reference 7

3.2 ASN.1 field functions

[Function]asn1_retCode asn1_array2tree (const ASN1 ARRAY TYPE *
array, ASN1 TYPE * definitions, char * errorDescription)

array : specify the array that contains ASN.1 declarations

definitions: return the pointer to the structure created by *ARRAY ASN.1 declara-
tions

errorDescription: return the error description.

Creates the structures needed to manage the ASN.1 definitions. array is a vector
created by asn1_parser2array().

Returns: ASN1 SUCCESS: Structure created correctly.

ASN1 ELEMENT NOT EMPTY: *definitions not ASN1 TYPE EMPTY.

ASN1 IDENTIFIER NOT FOUND: In the file there is an identifier that is not de-
fined (see errorDescription for more information).

ASN1 ARRAY ERROR: The array pointed by array is wrong.

[Function]asn1_retCode asn1_delete_structure (ASN1 TYPE * structure)
structure: pointer to the structure that you want to delete.

Deletes the structure *structure. At the end, *structure is set to
ASN1 TYPE EMPTY.

Returns: ASN1 SUCCESS: Everything OK.

ASN1 ELEMENT NOT FOUND: *structure was ASN1 TYPE EMPTY.

[Function]asn1_retCode asn1_delete_element (ASN1 TYPE structure, const
char * element_name)

structure: pointer to the structure that contains the element you want to delete.

element name: element’s name you want to delete.

Deletes the element named *element_name inside *structure.

Returns: ASN1 SUCCESS: Everything OK.

ASN1 ELEMENT NOT FOUND: The name element was not found.

[Function]asn1_retCode asn1_create_element (ASN1 TYPE definitions,
const char * source_name, ASN1 TYPE * element)

definitions: pointer to the structure returned by "parser asn1" function

source name: the name of the type of the new structure (must be inside p structure).

element: pointer to the structure created.

Creates a structure of type source_name. Example using "pkix.asn":

rc = asn1 create structure(cert def, "PKIX1.Certificate", certptr);

Returns: ASN1 SUCCESS: Creation OK.

ASN1 ELEMENT NOT FOUND: SOURCE NAME isn’t known

Chapter 3: Function reference 8

[Function]void asn1_print_structure (FILE * out, ASN1 TYPE structure,
const char * name, int mode)

out: pointer to the output file (e.g. stdout).

structure: pointer to the structure that you want to visit.

name: an element of the structure

mode: specify how much of the structure to print, can be ASN1_PRINT_NAME, ASN1_
PRINT_NAME_TYPE, ASN1_PRINT_NAME_TYPE_VALUE, or ASN1_PRINT_ALL.

Prints on the out file descriptor the structure’s tree starting from the name element
inside the structure structure.

[Function]asn1_retCode asn1_number_of_elements (ASN1 TYPE element,
const char * name, int * num)

element: pointer to the root of an ASN1 structure.

name: the name of a sub-structure of ROOT.

num: pointer to an integer where the result will be stored

Counts the number of elements of a sub-structure called NAME with names equal to
"?1","?2", ...

Returns: ASN1 SUCCESS: Creation OK.

ASN1 ELEMENT NOT FOUND: NAME isn’t known.

ASN1 GENERIC ERROR: Pointer num equal to NULL.

[Function]const char * asn1_find_structure_from_oid (ASN1 TYPE
definitions, const char * oidValue)

definitions: ASN1 definitions

oidValue: value of the OID to search (e.g. "1.2.3.4").

Search the structure that is defined just after an OID definition.

Returns: NULL when OIDVALUE not found, otherwise the pointer to a constant
string that contains the element name defined just after the OID.

[Function]asn1_retCode asn1_copy_node (ASN1 TYPE dst, const char *
dst_name, ASN1 TYPE src, const char * src_name)

dst: Destination ASN1 TYPE node.

dst name: Field name in destination node.

src: Source ASN1 TYPE node.

src name: Field name in source node.

Create a deep copy of a ASN1 TYPE variable.

Return value: Return ASN1 SUCCESS on success.

[Function]asn1_retCode asn1_write_value (ASN1 TYPE node_root, const
char * name, const void * ivalue, int len)

node root: pointer to a structure

name: the name of the element inside the structure that you want to set.

Chapter 3: Function reference 9

ivalue: vector used to specify the value to set. If len is >0, VALUE must be a two’s
complement form integer. if len=0 *VALUE must be a null terminated string with
an integer value.
len: number of bytes of *value to use to set the value: value[0]..value[len-1] or 0 if
value is a null terminated string
Set the value of one element inside a structure.
If an element is OPTIONAL and you want to delete it, you must use the value=NULL
and len=0. Using "pkix.asn":
result=asn1 write value(cert, "tbsCertificate.issuerUniqueID", NULL, 0);
Description for each type: INTEGER: VALUE must contain a two’s complement
form integer.
value[0]=0xFF , len=1 -> integer=-1. value[0]=0xFF value[1]=0xFF , len=2 ->
integer=-1. value[0]=0x01 , len=1 -> integer= 1. value[0]=0x00 value[1]=0x01 ,
len=2 -> integer= 1. value="123" , len=0 -> integer= 123.
ENUMERATED: As INTEGER (but only with not negative numbers).
BOOLEAN: VALUE must be the null terminated string "TRUE" or "FALSE" and
LEN != 0.
value="TRUE" , len=1 -> boolean=TRUE. value="FALSE" , len=1 ->
boolean=FALSE.
OBJECT IDENTIFIER: VALUE must be a null terminated string with each number
separated by a dot (e.g. "1.2.3.543.1"). LEN != 0.
value="1 2 840 10040 4 3" , len=1 -> OID=dsa-with-sha.
UTCTime: VALUE must be a null terminated string in one of these formats:
"YYMMDDhhmmssZ", "YYMMDDhhmmssZ", "YYMMDDhhmmss+hh’mm’",
"YYMMDDhhmmss-hh’mm’", "YYMMDDhhmm+hh’mm’", or "YYMMDDhhmm-
hh’mm’". LEN != 0.
value="9801011200Z" , len=1 -> time=Jannuary 1st, 1998 at 12h 00m Greenwich
Mean Time
GeneralizedTime: VALUE must be in one of this format: "YYYYMMDDhh-
mmss.sZ", "YYYYMMDDhhmmss.sZ", "YYYYMMDDhhmmss.s+hh’mm’",
"YYYYMMDDhhmmss.s-hh’mm’", "YYYYMMDDhhmm+hh’mm’", or
"YYYYMMDDhhmm-hh’mm’" where ss.s indicates the seconds with any precision
like "10.1" or "01.02". LEN != 0
value="2001010112001.12-0700" , len=1 -> time=Jannuary 1st, 2001 at 12h 00m
01.12s Pacific Daylight Time
OCTET STRING: VALUE contains the octet string and LEN is the number of octets.
value="\backslashx01\backslashx02\backslashx03" , len=3 -> three bytes
octet string
GeneralString: VALUE contains the generalstring and LEN is the number of octets.
value="\backslashx01\backslashx02\backslashx03" , len=3 -> three bytes
generalstring
BIT STRING: VALUE contains the bit string organized by bytes and LEN is the
number of bits.

Chapter 3: Function reference 10

value="\backslashxCF" , len=6 -> bit string="110011" (six bits)

CHOICE: if NAME indicates a choice type, VALUE must specify one of the alterna-
tives with a null terminated string. LEN != 0. Using "pkix.asn"\:

result=asn1 write value(cert, "certificate1.tbsCertificate.subject", "rdnSequence",
1);

ANY: VALUE indicates the der encoding of a structure. LEN != 0.

SEQUENCE OF: VALUE must be the null terminated string "NEW" and LEN !=
0. With this instruction another element is appended in the sequence. The name of
this element will be "?1" if it’s the first one, "?2" for the second and so on.

Using "pkix.asn"\:

result=asn1 write value(cert, "certificate1.tbsCertificate.subject.rdnSequence",
"NEW", 1);

SET OF: the same as SEQUENCE OF. Using "pkix.asn":

result=asn1 write value(cert, "tbsCertificate.subject.rdnSequence.?LAST", "NEW",
1);

Returns: ASN1 SUCCESS: Set value OK.

ASN1 ELEMENT NOT FOUND: NAME is not a valid element.

ASN1 VALUE NOT VALID: VALUE has a wrong format.

[Function]asn1_retCode asn1_read_value (ASN1 TYPE root, const char *
name, void * ivalue, int * len)

root: pointer to a structure.

name: the name of the element inside a structure that you want to read.

ivalue: vector that will contain the element’s content, must be a pointer to memory
cells already allocated.

len: number of bytes of *value: value[0]..value[len-1]. Initialy holds the sizeof value.

Returns the value of one element inside a structure.

If an element is OPTIONAL and the function "read value" returns ASN1_ELEMENT_
NOT_FOUND, it means that this element wasn’t present in the der encoding that created
the structure. The first element of a SEQUENCE OF or SET OF is named "?1".
The second one "?2" and so on.

INTEGER: VALUE will contain a two’s complement form integer.

integer=-1 -> value[0]=0xFF , len=1. integer=1 -> value[0]=0x01 , len=1.

ENUMERATED: As INTEGER (but only with not negative numbers).

BOOLEAN: VALUE will be the null terminated string "TRUE" or "FALSE" and
LEN=5 or LEN=6.

OBJECT IDENTIFIER: VALUE will be a null terminated string with each number
separated by a dot (i.e. "1.2.3.543.1").

LEN = strlen(VALUE)+1

UTCTime: VALUE will be a null terminated string in one of these formats: "YYM-
MDDhhmmss+hh’mm’" or "YYMMDDhhmmss-hh’mm’". LEN=strlen(VALUE)+1.

Chapter 3: Function reference 11

GeneralizedTime: VALUE will be a null terminated string in the same format used
to set the value.
OCTET STRING: VALUE will contain the octet string and LEN will be the number
of octets.
GeneralString: VALUE will contain the generalstring and LEN will be the number
of octets.
BIT STRING: VALUE will contain the bit string organized by bytes and LEN will
be the number of bits.
CHOICE: If NAME indicates a choice type, VALUE will specify the alternative se-
lected.
ANY: If NAME indicates an any type, VALUE will indicate the DER encoding of
the structure actually used.
Returns: ASN1 SUCCESS: Set value OK.
ASN1 ELEMENT NOT FOUND: NAME is not a valid element.
ASN1 VALUE NOT FOUND: There isn’t any value for the element selected.
ASN1 MEM ERROR: The value vector isn’t big enough to store the result. In this
case LEN will contain the number of bytes needed.

[Function]asn1_retCode asn1_read_tag (node asn * root, const char * name, int
* tagValue, int * classValue)

root: pointer to a structure
name: the name of the element inside a structure.
tagValue: variable that will contain the TAG value.
classValue: variable that will specify the TAG type.
Returns the TAG and the CLASS of one element inside a structure.
CLASS can have one of these constants: ASN1_CLASS_APPLICATION, ASN1_CLASS_
UNIVERSAL, ASN1_CLASS_PRIVATE or ASN1_CLASS_CONTEXT_SPECIFIC.
Returns: ASN1 SUCCESS: Set value OK.
ASN1 ELEMENT NOT FOUND: NAME is not a valid element.

3.3 DER functions

[Function]void asn1_length_der (unsigned long int len, unsigned char * ans, int
* ans_len)

len: value to convert.
ans: string returned.
ans len: number of meaningful bytes of ANS (ans[0]..ans[ans len-1]).
Creates the DER coding for the LEN parameter (only the length). The ans buffer is
pre-allocated and must have room for the output.

[Function]void asn1_octet_der (const unsigned char * str, int str_len,
unsigned char * der, int * der_len)

str: OCTET string.

Chapter 3: Function reference 12

str len: STR length (str[0]..str[str len-1]).
der: string returned.
der len: number of meaningful bytes of DER (der[0]..der[ans len-1]).
Creates the DER coding for an OCTET type (length included).

[Function]void asn1_bit_der (const unsigned char * str, int bit_len, unsigned
char * der, int * der_len)

str: BIT string.
bit len: number of meaningful bits in STR.
der: string returned.
der len: number of meaningful bytes of DER (der[0]..der[ans len-1]).
Creates the DER coding for a BIT STRING type (length and pad included).

[Function]asn1_retCode asn1_der_coding (ASN1 TYPE element, const char *
name, void * ider, int * len, char * ErrorDescription)

element: pointer to an ASN1 element
name: the name of the structure you want to encode (it must be inside *POINTER).
ider: vector that will contain the DER encoding. DER must be a pointer to memory
cells already allocated.
len: number of bytes of *ider: ider[0]..ider[len-1], Initialy holds the sizeof of der
vector.
Creates the DER encoding for the NAME structure (inside *POINTER structure).
Returns: ASN1 SUCCESS: DER encoding OK.
ASN1 ELEMENT NOT FOUND: NAME is not a valid element.
ASN1 VALUE NOT FOUND: There is an element without a value.
ASN1 MEM ERROR: ider vector isn’t big enough. Also in this case LEN will
contain the length needed.

[Function]signed long asn1_get_length_der (const unsigned char * der, int
der_len, int * len)

der: DER data to decode.
der len: Length of DER data to decode.
len: Output variable containing the length of the DER length field.
Extract a length field from DER data.
Return value: Return the decoded length value, or -1 on indefinite length, or -2 when
the value was too big.

[Function]int asn1_get_tag_der (const unsigned char * der, int der_len,
unsigned char * class, int * len, unsigned long * tag)

der: DER data to decode.
der len: Length of DER data to decode.
class: Output variable containing decoded class.
len: Output variable containing the length of the DER TAG data.

Chapter 3: Function reference 13

tag : Output variable containing the decoded tag.

Decode the class and TAG from DER code.

Return value: Returns ASN1 SUCCESS on success, or an error.

[Function]int asn1_get_octet_der (const unsigned char * der, int der_len, int
* ret_len, unsigned char * str, int str_size, int * str_len)

der: DER data to decode containing the OCTET SEQUENCE.

der len: Length of DER data to decode.

ret len: Output variable containing the length of the DER data.

str: Pre-allocated output buffer to put decoded OCTET SEQUENCE in.

str size: Length of pre-allocated output buffer.

str len: Output variable containing the length of the OCTET SEQUENCE.

Extract an OCTET SEQUENCE from DER data.

Return value: Returns ASN1 SUCCESS on success, or an error.

[Function]int asn1_get_bit_der (const unsigned char * der, int der_len, int *
ret_len, unsigned char * str, int str_size, int * bit_len)

der: DER data to decode containing the BIT SEQUENCE.

der len: Length of DER data to decode.

ret len: Output variable containing the length of the DER data.

str: Pre-allocated output buffer to put decoded BIT SEQUENCE in.

str size: Length of pre-allocated output buffer.

bit len: Output variable containing the size of the BIT SEQUENCE.

Extract a BIT SEQUENCE from DER data.

Return value: Return ASN1 SUCCESS on success, or an error.

[Function]asn1_retCode asn1_der_decoding (ASN1 TYPE * element, const
void * ider, int len, char * errorDescription)

element: pointer to an ASN1 structure.

ider: vector that contains the DER encoding.

len: number of bytes of *ider: ider[0]..ider[len-1].

errorDescription: null-terminated string contains details when an error occurred.

Fill the structure *ELEMENT with values of a DER encoding string. The sructure
must just be created with function ’create stucture’. If an error occurs during the
decoding procedure, the *ELEMENT is deleted and set equal to ASN1_TYPE_EMPTY.

Returns: ASN1 SUCCESS: DER encoding OK.

ASN1 ELEMENT NOT FOUND: ELEMENT is ASN1 TYPE EMPTY.

ASN1 TAG ERROR,ASN1 DER ERROR: The der encoding doesn’t match the
structure NAME. *ELEMENT deleted.

Chapter 3: Function reference 14

[Function]asn1_retCode asn1_der_decoding_element (ASN1 TYPE *
structure, const char * elementName, const void * ider, int len, char *
errorDescription)

structure: pointer to an ASN1 structure
elementName: name of the element to fill
ider: vector that contains the DER encoding of the whole structure.
len: number of bytes of *der: der[0]..der[len-1]
errorDescription: null-terminated string contains details when an error occurred.
Fill the element named ELEMENTNAME with values of a DER encoding string. The
sructure must just be created with function ’create stucture’. The DER vector must
contain the encoding string of the whole STRUCTURE. If an error occurs during
the decoding procedure, the *STRUCTURE is deleted and set equal to ASN1_TYPE_
EMPTY.
Returns: ASN1 SUCCESS: DER encoding OK.
ASN1 ELEMENT NOT FOUND: ELEMENT is ASN1 TYPE EMPTY or element-
Name == NULL.
ASN1 TAG ERROR,ASN1 DER ERROR: The der encoding doesn’t match the
structure STRUCTURE. *ELEMENT deleted.

[Function]asn1_retCode asn1_der_decoding_startEnd (ASN1 TYPE
element, const void * ider, int len, const char * name_element, int *
start, int * end)

element: pointer to an ASN1 element
ider: vector that contains the DER encoding.
len: number of bytes of *ider: ider[0]..ider[len-1]
name element: an element of NAME structure.
start: the position of the first byte of NAME ELEMENT decoding (ider[*start])
end: the position of the last byte of NAME ELEMENT decoding (ider[*end])
Find the start and end point of an element in a DER encoding string. I mean that if
you have a der encoding and you have already used the function "asn1 der decoding"
to fill a structure, it may happen that you want to find the piece of string concerning
an element of the structure.
Example: the sequence "tbsCertificate" inside an X509 certificate.
Returns: ASN1 SUCCESS: DER encoding OK.
ASN1 ELEMENT NOT FOUND: ELEMENT is ASN1 TYPE EMPTY or
NAME ELEMENT is not a valid element.
ASN1 TAG ERROR,ASN1 DER ERROR: the der encoding doesn’t match the
structure ELEMENT.

[Function]asn1_retCode asn1_expand_any_defined_by (ASN1 TYPE
definitions, ASN1 TYPE * element)

definitions: ASN1 definitions
element: pointer to an ASN1 structure

Chapter 3: Function reference 15

Expands every "ANY DEFINED BY" element of a structure created from a DER
decoding process (asn1 der decoding function). The element ANY must be defined
by an OBJECT IDENTIFIER. The type used to expand the element ANY is the first
one following the definition of the actual value of the OBJECT IDENTIFIER.

Returns: ASN1 SUCCESS: Substitution OK.

ASN1 ERROR TYPE ANY: Some "ANY DEFINED BY" element couldn’t be ex-
panded due to a problem in OBJECT ID -> TYPE association.

other errors: Result of der decoding process.

[Function]asn1_retCode asn1_expand_octet_string (ASN1 TYPE
definitions, ASN1 TYPE * element, const char * octetName, const char
* objectName)

definitions: ASN1 definitions

element: pointer to an ASN1 structure

octetName: name of the OCTECT STRING field to expand.

objectName: name of the OBJECT IDENTIFIER field to use to define the type for
expansion.

Expands an "OCTET STRING" element of a structure created from a DER decoding
process (asn1 der decoding function). The type used for expansion is the first one
following the definition of the actual value of the OBJECT IDENTIFIER indicated
by OBJECTNAME.

Returns: ASN1 SUCCESS: Substitution OK.

ASN1 ELEMENT NOT FOUND: OBJECTNAME or OCTETNAME are not cor-
rect.

ASN1 VALUE NOT VALID: Wasn’t possible to find the type to use for expansion.

other errors: result of der decoding process.

3.4 Error handling functions

[Function]void libtasn1_perror (asn1 retCode error)
error: is an error returned by a libtasn1 function.

This function is like perror(). The only difference is that it accepts an error returned
by a libtasn1 function.

[Function]const char * libtasn1_strerror (asn1 retCode error)
error: is an error returned by a libtasn1 function.

This function is similar to strerror(). The only difference is that it accepts an error
(number) returned by a libtasn1 function.

Returns: Pointer to static zero-terminated string describing error code.

Chapter 3: Function reference 16

3.5 Auxilliary functions

[Function]ASN1_TYPE asn1_find_node (ASN1 TYPE pointer, const char *
name)

pointer: NODE ASN element pointer.
name: null terminated string with the element’s name to find.
Searches for an element called NAME starting from POINTER. The name is com-
posed by differents identifiers separated by dots. When *POINTER has a name, the
first identifier must be the name of *POINTER, otherwise it must be the name of
one child of *POINTER.
Return value: the searching result. NULL if not found.

[Function]const char * asn1_check_version (const char * req_version)
req version: Required version number, or NULL.
Check that the the version of the library is at minimum the requested one and return
the version string; return NULL if the condition is not satisfied. If a NULL is passed to
this function, no check is done, but the version string is simply returned.
See LIBTASN1_VERSION for a suitable req_version string.
Return value: Version string of run-time library, or NULL if the run-time library does
not meet the required version number.

Appendix A: Copying This Manual 17

Appendix A Copying This Manual

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

Appendix A: Copying This Manual 18

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix A: Copying This Manual 19

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,

Appendix A: Copying This Manual 20

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix A: Copying This Manual 21

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix A: Copying This Manual 22

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix A: Copying This Manual 23

A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Concept Index 24

Concept Index

A
ASN.1 schema . 1
asn1Coding program . 4
asn1Decoding program . 4
asn1Parser program . 4

F
FDL, GNU Free Documentation License 17
Future developments . 3

H
Header file libtasn1.h . 3

M
Main type ASN1 TYPE . 3

P
Porting . 1

S
Supported ASN.1 types, list of 1

T
threads . 1

Function and Data Index 25

Function and Data Index

A
asn1_array2tree . 7
asn1_bit_der . 12
asn1_check_version . 16
asn1_copy_node . 8
asn1_create_element . 7
asn1_delete_element . 7
asn1_delete_structure . 7
asn1_der_coding . 12
asn1_der_decoding . 13
asn1_der_decoding_element 14
asn1_der_decoding_startEnd 14
asn1_expand_any_defined_by 14
asn1_expand_octet_string 15
asn1_find_node . 16
asn1_find_structure_from_oid 8
asn1_get_bit_der . 13

asn1_get_length_der . 12
asn1_get_octet_der . 13
asn1_get_tag_der . 12
asn1_length_der . 11
asn1_number_of_elements . 8
asn1_octet_der . 11
asn1_parser2array . 6
asn1_parser2tree . 6
asn1_print_structure . 8
asn1_read_tag . 11
asn1_read_value . 10
asn1_write_value . 8

L
libtasn1_perror . 15
libtasn1_strerror . 15

	ASN.1 structure handling
	ASN.1 syntax
	Naming
	Library Notes
	Future developments

	Utilities
	Invoking asn1Parser
	Invoking asn1Coding
	Invoking asn1Decoding

	Function reference
	ASN.1 schema functions
	ASN.1 field functions
	DER functions
	Error handling functions
	Auxilliary functions

	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Concept Index
	Function and Data Index

