
Units Conversion
Edition 2.00 for units Version 2.00

Adrian Mariano

Copyright c© 1996, 1997, 1999, 2000, 2001, 2002, 2004, 2005, 2007, 2011, 2012 Free Software
Foundation, Inc

The author gives unlimited permission to copy, translate and/or distribute this document,
with or without modifications, as long as this notice is preserved.

Units Conversion 1

Units Conversion

1 Overview of units

The units program converts quantities expressed in various systems of measurement to their
equivalents in other systems of measurement. Like many similar programs, it can handle
multiplicative scale changes. It can also handle nonlinear conversions such as Fahrenheit
to Celsius.1 See Section 6.1 [Temperature Conversions], page 11. The program can also
perform conversions from and to sums of units, such as converting between meters and feet
plus inches.

Beyond simple unit conversions, units can be used as a general-purpose scientific cal-
culator that keeps track of units in its calculations. You can form arbitrary complex math-
ematical expressions of dimensions including sums, products, quotients, powers, and even
roots of dimensions. Thus you can ensure accuracy and dimensional consistency when work-
ing with long expressions that involve many different units that may combine in complex
ways.

The units are defined in an external data file. You can use the extensive data file that
comes with this program, or you can provide your own data file to suit your needs. You
can also use your own data file to supplement the standard data file.

Basic operation is simple: you enter the units that you want to convert from and the
units that you want to convert to. You can use the program interactively with prompts, or
you can use it from the command line.

2 Interacting with units

To invoke units for interactive use, type units at your shell prompt. The program will
print something like this:

Currency exchange rates from 04/23/12

2516 units, 85 prefixes, 65 nonlinear units

You have:

At the ‘You have:’ prompt, type the quantity and units that you are converting from. For
example, if you want to convert ten meters to feet, type 10 meters. Next, units will print
‘You want:’. You should type the units you want to convert to. To convert to feet, you
would type feet. If the readline library was compiled in then the tab key can be used
to complete unit names. See Chapter 14 [Readline Support], page 28, for more information
about readline. To quit the program press Ctrl-C or Ctrl-D under Unix. Under Windows
press Ctrl-Z.

The answer will be displayed in two ways. The first line of output, which is marked with
a ‘*’ to indicate multiplication, gives the result of the conversion you have asked for. The
second line of output, which is marked with a ‘/’ to indicate division, gives the inverse of
the conversion factor. If you convert 10 meters to feet, units will print

1 But Fahrenheit to Celsius is linear, you insist. Not so. A transformation T is linear if T (x + y) =
T (x) + T (y) and this fails for T (x) = ax+ b. This transformation is affine, but not linear.

Units Conversion 2

* 32.808399

/ 0.03048

which tells you that 10 meters equals about 32.8 feet. The second number gives the con-
version in the opposite direction. In this case, it tells you that 1 foot is equal to about 0.03
dekameters since the dekameter is 10 meters. It also tells you that 1/32.8 is about 0.03.

The units program prints the inverse because sometimes it is a more convenient number.
In the example above, for example, the inverse value is an exact conversion: a foot is exactly
0.03048 dekameters. But the number given the other direction is inexact.

If you convert grains to pounds, you will see the following:

You have: grains

You want: pounds

* 0.00014285714

/ 7000

>From the second line of the output you can immediately see that a grain is equal to a
seven thousandth of a pound. This is not so obvious from the first line of the output. If
you find the output format confusing, try using the ‘--verbose’ option:

You have: grain

You want: aeginamina

grain = 0.00010416667 aeginamina

grain = (1 / 9600) aeginamina

If you request a conversion between units that measure reciprocal dimensions, then units

will display the conversion results with an extra note indicating that reciprocal conversion
has been done:

You have: 6 ohms

You want: siemens

reciprocal conversion

* 0.16666667

/ 6

Reciprocal conversion can be suppressed by using the ‘--strict’ option. As usual, use the
‘--verbose’ option to get more comprehensible output:

You have: tex

You want: typp

reciprocal conversion

1 / tex = 496.05465 typp

1 / tex = (1 / 0.0020159069) typp

You have: 20 mph

You want: sec/mile

reciprocal conversion

1 / 20 mph = 180 sec/mile

1 / 20 mph = (1 / 0.0055555556) sec/mile

If you enter incompatible unit types, the units program will print a message indicating
that the units are not conformable and it will display the reduced form for each unit:

Units Conversion 3

You have: ergs/hour

You want: fathoms kg^2 / day

conformability error

2.7777778e-11 kg m^2 / sec^3

2.1166667e-05 kg^2 m / sec

If you only want to find the reduced form or definition of a unit, simply press ENTER at
the ‘You want:’ prompt. Here is an example:

You have: jansky

You want:

Definition: fluxunit = 1e-26 W/m^2 Hz = 1e-26 kg / s^2

The output from units indicates that the jansky is defined to be equal to a fluxunit which
in turn is defined to be a certain combination of watts, meters, and hertz. The fully reduced
(and in this case somewhat more cryptic) form appears on the far right.

Some named units are treated as dimensionless in some situations. These units include
the radian and steradian. These units will be treated as equal to 1 in units conversions.
Power is equal to torque times angular velocity. This conversion can only be performed if
the radian is dimensionless.

You have: (14 ft lbf) (12 radians/sec)

You want: watts

* 227.77742

/ 0.0043902509

Named dimensionless units are not treated as dimensionless in other contexts. They cannot
be used as exponents so for example, ‘meter^radian’ is not allowed.

If you want a list of options you can type ? at the ‘You want:’ prompt. The program
will display a list of named units that are conformable with the unit that you entered at
the ‘You have:’ prompt above. Conformable unit combinations will not appear on this list.

Typing help at either prompt displays a short help message. You can also type help

followed by a unit name. This will invoke a pager on the units data base at the point where
that unit is defined. You can read the definition and comments that may give more details
or historical information about the unit. (You can generally quit out of the page by pressing
‘q’.)

Typing search text will display a list of all of the units whose names contain text as a
substring along with their definitions. This may help in the case where you aren’t sure of
the right unit name.

3 Using units Non-Interactively

The units program can perform units conversions non-interactively from the command
line. To do this, type the command, type the original unit expression, and type the new
units you want. If a units expression contains non-alphanumeric characters, you may need
to protect it from interpretation by the shell using single or double quote characters.

If you type

units "2 liters" quarts

then units will print

Units Conversion 4

* 2.1133764

/ 0.47317647

and then exit. The output tells you that 2 liters is about 2.1 quarts, or alternatively that
a quart is about 0.47 times 2 liters.

If the conversion is successful, then units will return success (zero) to the calling en-
vironment. If you enter non-conformable units then units will print a message giving the
reduced form of each unit and it will return failure (nonzero) to the calling environment.

When you invoke units with only one argument, it will print out the definition of the
specified unit. It will return failure if the unit is not defined and success if the unit is
defined.

4 Unit Definitions

The conversion information is read from a units data file that is called ‘definitions.units’
and is usually located in the ‘/usr/share/units’ directory. If you invoke units with the
‘-V’ option, it will print the location of this file. The default file includes definitions for all
familiar units, abbreviations and metric prefixes. It also includes many obscure or archaic
units.

Many constants of nature are defined, including these:

pi ratio of circumference to diameter
c speed of light
e charge on an electron
force acceleration of gravity
mole Avogadro’s number
water pressure per unit height of water
Hg pressure per unit height of mercury
au astronomical unit
k Boltzman’s constant
mu0 permeability of vacuum
epsilon0 permittivity of vacuum
G Gravitational constant
mach speed of sound

The standard data file includes atomic masses for all of the elements and numerous other
constants. Also included are the densities of various ingredients used in baking so that ‘2
cups flour_sifted’ can be converted to ‘grams’. This is not an exhaustive list. Consult
the units data file to see the complete list, or to see the definitions that are used.

The ‘pound’ is a unit of mass. To get force, multiply by the force conversion unit ‘force’
or use the shorthand ‘lbf’. (Note that ‘g’ is already taken as the standard abbreviation for
the gram.) The unit ‘ounce’ is also a unit of mass. The fluid ounce is ‘fluidounce’ or ‘floz’.
British capacity units that differ from their US counterparts, such as the British Imperial
gallon, are prefixed with ‘br’. Currency is prefixed with its country name: ‘belgiumfranc’,
‘britainpound’.

When searching for a unit, if the specified string does not appear exactly as a unit name,
then the units program will try to remove a trailing ‘s’, ‘es’ or ‘ies’. If that fails, units

Units Conversion 5

will check for a prefix. The database includes all of the standard metric prefixes. Only
one prefix is permitted per unit, so ‘micromicrofarad’ will fail. However, prefixes can
appear alone with no unit following them, so ‘micro*microfarad’ will work, as will ‘micro
microfarad’.

To find out which units and prefixes are available, read the standard units data file,
which is extensively annotated.

4.1 English Customary Units

English customary units differ in various ways in different regions. In Britain a complex
system of volume measurements featured different gallons for different materials such as a
wine gallon and ale gallon that different by twenty percent. This complexity was swept
away in 1824 by a reform that created an entirely new gallon, the British Imperial gallon
defined as the volume occupied by ten pounds of water. Meanwhile in the USA the gallon
is derived from the 1707 Winchester wine gallon, which is 231 cubic inches. These gallons
differ by about twenty percent. By default if units runs in the ‘en_GB’ locale you will get
the British volume measures. If it runs in the ‘en_US’ locale you will get the US volume
measures. In other locales the default values are the US definitions. If you wish to force
different definitions then set the environment variable UNITS_ENGLISH to either ‘US’ or ‘GB’
to set the desired definitions independent of the locale.

Before 1959, the value of a yard (and other units of measure defined in terms of it) differed
slightly among English-speaking countries. In 1959, Australia, Canada, New Zealand, the
United Kingdom, the United States, and South Africa adopted the Canadian value of 1 yard
= 0.9144 m (exactly), which was approximately halfway between the values used by the UK
and the US; it had the additional advantage of making 1 inch = 2.54 cm (exactly). This
new standard was termed the International Yard. Australia, Canada, and the UK then
defined all customary lengths in terms of the International Yard (Australia did not define
the furlong or rod); because many US land surveys were in terms of the pre-1959 units, the
US continued to define customary surveyors’ units (furlong, chain, rod, and link) in terms
of the previous value for the foot, which was termed the US survey foot. The US defined
a US survey mile as 5280 US survey feet, and defined a statute mile as a US survey mile.
The US values for these units differ from the international values by about 2 ppm.

The units program uses the international values for these units; the US values can
be obtained by using either the ‘US’ or the ‘survey’ prefix. In either case, the simple
familiar relationships among the units are maintained, e.g., 1 ‘furlong’ = 660 ‘ft’, and
1 ‘USfurlong’ = 660 ‘USft’, though the metric equivalents differ slightly between the two
cases. The ‘US’ prefix or the ‘survey’ prefix can also be used to obtain the US survey
mile and the value of the US yard prior to 1959, e.g., ‘USmile’ or ‘surveymile’ (but not
‘USsurveymile’). To get the US value of the statute mile, use either ‘USstatutemile’ or
‘USmile’.

Except for distances that extend over hundreds of miles (such as in the US State Plane
Coordinate System), the differences in the miles are usually insignificant:

You have: 100 surveymile - 100 mile

You want: inch

* 12.672025

/ 0.078913984

Units Conversion 6

The pre-1959 UK values for these units can be obtained with the prefix ‘UK’.

In the US, the acre is officially defined in terms of the US survey foot, but units uses a
definition based on the international foot. If you want the official US acre use ‘USacre’ and
similarly use ‘USacrefoot’ for the official US version of that unit. The difference between
these units is about 4 parts per million.

5 Unit Expressions

5.1 Operators

You can enter more complicated units by combining units with operations such as powers,
multiplication, division, addition, subtraction, and parentheses for grouping. You can use
the customary symbols for these operators when units is invoked with its default options.
Additionally, units supports some extensions, including high priority multiplication us-
ing a space, and a high priority numerical division operator (‘|’) that can simplify some
expressions.

Powers of units can be specified using the ‘^’ character as shown in the following example,
or by simple concatenation of a unit and its exponent: ‘cm3’ is equivalent to ‘cm^3’; if the
exponent is more than one digit, the ‘^’ is required. An exponent like ‘2^3^2’ is evaluated
right to left as usual. The ‘^’ operator has the second highest precedence. You can also use
‘**’ as an exponent operator.

You have: cm^3

You want: gallons

* 0.00026417205

/ 3785.4118

You have: arabicfoot * arabictradepound * force

You want: ft lbf

* 0.7296

/ 1.370614

You multiply units using a space or an asterisk (‘*’). The example above shows both forms.
You can divide units using the slash (‘/’) or with ‘per’.

You have: furlongs per fortnight

You want: m/s

* 0.00016630986

/ 6012.8727

When a unit includes a prefix, exponent operators apply to the combination, so
‘centimeter^3’ gives cubic centimeters. If you separate the prefix from the unit with any
multiplication operator, such as ‘centi meter^3’, then the prefix is treated as a separate
unit, so the exponent does not apply. The second example would be a hundredth of a
cubic meter, not a centimeter.

Multiplication using a space has a higher precedence than division using a slash and is
evaluated left to right; in effect, the first ‘/’ character marks the beginning of the denom-
inator of a unit expression. This makes it simple to enter a quotient with several terms in

Units Conversion 7

the denominator: ‘W / m^2 Hz’. If you multiply with ‘*’ then you must group the terms in
the denominator with parentheses: ‘W / (m^2 * Hz)’.

The higher precedence of the space operator may not always be advantageous. For
example, ‘m/s s/day’ is equivalent to ‘m / s s day’ and has dimensions of length per time
cubed. Similarly, ‘1/2 meter’ refers to a unit of reciprocal length equivalent to 0.5/meter,
perhaps not what you would intend if you entered that expression. The ‘*’ operator is
convenient for multiplying a sequence of quotients. With the ‘*’ operator, the example
above becomes ‘m/s * s/day’, which is equivalent to ‘m/day’. Similarly, you could write
‘1/2 * meter’ to get half a meter. Alternatively, parentheses can be used for grouping:
you could write ‘(1/2) meter’ to get half a meter. See Section 5.5 [Complicated Unit
Expressions], page 9, for an illustration of the various options.

The units program supports another option for numerical fractions. You can indicate
division of numbers with the vertical bar (‘|’), so if you wanted half a meter you could write
‘1|2 meter’. This operator has the highest precedence, so you can write the square root of
two thirds ‘2|3^1|2’. You cannot use the vertical bar to indicate division of non-numerical
units (e.g., ‘m|s’ results in an error message).

You have: 1|2 inch

You want: cm

* 1.27

/ 0.78740157

You can use parentheses for grouping:

You have: (1/2) kg / (kg/meter)

You want: league

* 0.00010356166

/ 9656.0833

5.2 Sums and Differences of Units

Outside of the SI, it is sometimes desirable to add values of different units. You may also
wish to use units as a calculator that keeps track of units. Sums of conformable units are
written with the ‘+’ character, and differences with the ‘-’ character.

You have: 2 hours + 23 minutes + 32 seconds

You want: seconds

* 8612

/ 0.00011611705

You have: 12 ft + 3 in

You want: cm

* 373.38

/ 0.0026782366

You have: 2 btu + 450 ft lbf

You want: btu

* 2.5782804

/ 0.38785542

Units Conversion 8

The expressions that are added or subtracted must reduce to identical expressions in prim-
itive units, or an error message will be displayed:

You have: 12 printerspoint - 4 heredium

^

Illegal sum of non-conformable units

As usual, the precedence for ‘+’ and ‘-’ is lower than that of the other operators. A fractional
quantity such as 2 1/2 cups can be given as ‘(2+1|2) cups’; the parentheses are necessary
because multiplication has higher precedence than addition. If you omit the parentheses,
units attempts to add ‘2’ and ‘1|2 cups’, and you get an error message:

You have: 2+1|2 cups

^

Illegal sum or difference of non-conformable units

The expression could also be correctly written as ‘(2+1/2) cups’. If you write ‘2 1|2 cups’
the space is interpreted as multiplication so the result is the same as ‘1 cup’.

The ‘+’ and ‘-’ characters sometimes appears in exponents like ‘3.43e+8’. This leads to
an ambiguity in an expression like ‘3e+2 yC’. The unit ‘e’ is a small unit of charge, so this
can be regarded as equivalent to ‘(3e+2) yC’ or ‘(3 e)+(2 yC)’. This ambiguity is resolved
by always interpreting ‘+’ and ‘-’ as part of an exponent if possible.

5.3 Numbers as Units

For units, numbers are just another kind of unit. They can appear as many times as you
like and in any order in a unit expression. For example, to find the volume of a box that is
2 ft by 3 ft by 12 ft in steres, you could do the following:

You have: 2 ft 3 ft 12 ft

You want: stere

* 2.038813

/ 0.49048148

You have: $ 5 / yard

You want: cents / inch

* 13.888889

/ 0.072

And the second example shows how the dollar sign in the units conversion can precede the
five. Be careful: units will interpret ‘$5’ with no space as equivalent to ‘dollar^5’.

5.4 Built-in Functions

Several built-in functions are provided: ‘sin’, ‘cos’, ‘tan’, ‘ln’, ‘log’, ‘log2’, ‘exp’, ‘acos’,
‘atan’ and ‘asin’. The ‘sin’, ‘cos’, and ‘tan’ functions require either a dimensionless
argument or an argument with dimensions of angle.

Units Conversion 9

You have: sin(30 degrees)

You want:

Definition: 0.5

You have: sin(pi/2)

You want:

Definition: 1

You have: sin(3 kg)

^

Unit not dimensionless

The other functions on the list require dimensionless arguments. The inverse trigonometric
functions return arguments with dimensions of angle.

If you wish to take roots of units, you may use the ‘sqrt’ or ‘cuberoot’ functions. These
functions require that the argument have the appropriate root. You can obtain higher roots
by using fractional exponents:

You have: sqrt(acre)

You want: feet

* 208.71074

/ 0.0047913202

You have: (400 W/m^2 / stefanboltzmann)^(1/4)

You have:

Definition: 289.80882 K

You have: cuberoot(hectare)

^

Unit not a root

5.5 Complicated Unit Expressions

The units program is especially helpful in ensuring accuracy and dimensional consistency
when converting lengthy unit expressions. For example, one form of the Darcy–Weisbach
fluid-flow equation is

ΔP =
8

π2
ρfL

Q2

d5

where ΔP is the pressure drop, ρ is the mass density, f is the (dimensionless) friction factor,
L is the length of the pipe, Q is the volumetric flow rate, and d is the pipe diameter. It
might be desired to have the equation in the form

ΔP = A1ρfL
Q2

d5

that accepted the user’s normal units; for typical units used in the US, the required con-
version could be something like

You have: (8/pi^2)(lbm/ft^3)ft(ft^3/s)^2(1/in^5)

You want: psi

* 43.533969

/ 0.022970568

Units Conversion 10

The parentheses allow individual terms in the expression to be entered naturally, as they
might be read from the formula. Alternatively, the multiplication could be done with the
‘*’ rather than a space; then parentheses are needed only around ‘ft^3/s’ because of its
exponent:

You have: 8/pi^2 * lbm/ft^3 * ft * (ft^3/s)^2 /in^5

You want: psi

* 43.533969

/ 0.022970568

Without parentheses, and using spaces for multiplication, the previous conversion would
need to be entered as

You have: 8 lb ft ft^3 ft^3 / pi^2 ft^3 s^2 in^5

You want: psi

* 43.533969

/ 0.022970568

5.6 Backwards Compatibility: ‘*’ and ‘-’

The original units assigned multiplication a higher precedence than division using the slash.
This differs from the usual precedence rules, which give multiplication and division equal
precedence, and can be confusing for people who think of units as a calculator.

The star operator (‘*’) included in this units program has, by default, the same prece-
dence as division, and hence follows the usual precedence rules. For backwards compatibility
you can invoke units with the ‘--oldstar’ option. Then ‘*’ has a higher precedence than
division, and the same precedence as multiplication using the space.

Historically, the hyphen (‘-’) has been used in technical publications to indicate products
of units, and the original units program treated it as a multiplication operator. Because
units provides several other ways to obtain unit products, and because ‘-’ is a subtraction
operator in general algebraic expressions, units treats the binary ‘-’ as a subtraction op-
erator by default. For backwards compatibility use the ‘--product’ option, which causes
units to treat the binary ‘-’ operator as a product operator. When ‘-’ is a multiplica-
tion operator it has the same precedence as multiplication with a space, giving it a higher
precedence than division.

When ‘-’ is used as a unary operator it negates its operand. Regardless of the units

options, if ‘-’ appears after ‘(’ or after ‘+’ then it will act as a negation operator. So you
can always compute 20 degrees minus 12 minutes by entering ‘20 degrees + -12 arcmin’.
You must use this construction when you define new units because you cannot know what
options will be in force when your definition is processed.

6 Nonlinear Unit Conversions

Nonlinear units are represented using functional notation. They make possible nonlinear
unit conversions such as temperature.

Units Conversion 11

6.1 Temperature Conversions

Conversions between temperatures are different from linear conversions between tempera-
ture increments—see the example below. The absolute temperature conversions are handled
by units starting with ‘temp’, and you must use functional notation. The temperature-
increment conversions are done using units starting with ‘deg’ and they do not require
functional notation.

You have: tempF(45)

You want: tempC

7.2222222

You have: 45 degF

You want: degC

* 25

/ 0.04

Think of ‘tempF(x)’ not as a function but as a notation that indicates that x should have
units of ‘tempF’ attached to it. See Section 9.3 [Defining Nonlinear Units], page 21. The
first conversion shows that if it’s 45 degrees Fahrenheit outside, it’s 7.2 degrees Celsius. The
second conversion indicates that a change of 45 degrees Fahrenheit corresponds to a change
of 25 degrees Celsius. The conversion from ‘tempF(x)’ is to absolute temperature, so that

You have: tempF(45)

You want: degR

* 504.67

/ 0.0019814929

gives the same result as

You have: tempF(45)

You want: tempR

* 504.67

/ 0.0019814929

But if you convert ‘tempF(x)’ to ‘degC’, the output is probably not what you expect:

You have: tempF(45)

You want: degC

* 280.37222

/ 0.0035666871

The result is the temperature in K, because ‘degC’ is defined as ‘K’, the Kelvin. For consis-
tent results, use the ‘tempX ’ units when converting to a temperature rather than converting
a temperature increment.

6.2 Other Nonlinear Units

Some other examples of nonlinear units are numerous different ring sizes and wire gauges,
the grit sizes used for abrasives, the decibel scale, shoe size, scales for the density of sugar
(e.g. baume). The standard data file also supplies units for computing the area of a
circle and the volume of a sphere. See the standard units data file for more details. Wire
gauges with multiple zeroes are signified using negative numbers where two zeroes is ‘-1’.

Units Conversion 12

Alternatively, you can use the synonyms ‘g00’, ‘g000’, and so on that are defined in the
standard units data file.

You have: wiregauge(11)

You want: inches

* 0.090742002

/ 11.020255

You have: brwiregauge(g00)

You want: inches

* 0.348

/ 2.8735632

You have: 1 mm

You want: wiregauge

18.201919

You have: grit_P(600)

You want: grit_ansicoated

342.76923

The last example shows the conversion from P graded sand paper, which is the European
standard and may be marked “P600” on the back, to the USA standard.

You can compute the area of a circle using the nonlinear unit, ‘circlearea’. You can
also do this using the circularinch or circleinch. The next example shows two ways to
compute the area of a circle with a five inch radius and one way to compute the volume of
a sphere with a radius of one meter.

You have: circlearea(5 in)

You want: in2

* 78.539816

/ 0.012732395

You have: 10^2 circleinch

You want: in2

* 78.539816

/ 0.012732395

You have: spherevol(meter)

You want: ft3

* 147.92573

/ 0.0067601492

7 Unit Lists: Conversion to Sums of Units

Outside of the SI, it is sometimes desirable to convert a single unit to a sum of units—
for example, feet to feet plus inches. The conversion from sums of units was described in
Section 5.2 [Sums and Differences of Units], page 7, and is a simple matter of adding the
units with the ‘+’ sign:

Units Conversion 13

You have: 12 ft + 3 in + 3|8 in

You want: ft

* 12.28125

/ 0.081424936

Although you can similarly write a sum of units to convert to, the result will not be the
conversion to the units in the sum, but rather the conversion to the particular sum that
you have entered:

You have: 12.28125 ft

You want: ft + in + 1|8 in

* 11.228571

/ 0.089058524

The unit expression given at the ‘You want:’ prompt is equivalent to asking for conversion
to multiples of ‘1 ft + 1 in + 1|8 in’, which is 1.09375 ft, so the conversion in the previous
example is equivalent to

You have: 12.28125 ft

You want: 1.09375 ft

* 11.228571

/ 0.089058524

In converting to a sum of units like miles, feet and inches, you typically want the largest
integral value for the first unit, followed by the largest integral value for the next, and the
remainder converted to the last unit. You can do this conversion easily with units using
a special syntax for lists of units. You must list the desired units in order from largest to
smallest, separated by the semicolon (‘;’) character:

You have: 12.28125 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3|8 in

The conversion always gives integer coefficients on the units in the list, except possibly the
last unit when the conversion is not exact:

You have: 12.28126 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3.00096 * 1|8 in

The order in which you list the units is important:

You have: 3 kg

You want: oz;lb

105 oz + 0.051367866 lb

You have: 3 kg

You want: lb;oz

6 lb + 9.8218858 oz

Listing ounces before pounds produces a technically correct result, but not a very useful
one. You must list the units in descending order of size in order to get the most useful
result.

Ending a unit list with the separator ‘;’ duplicates the last unit on the list, so ‘ft;in;1|8
in;’ is equivalent to ‘ft;in;1|8 in;1|8 in’. With the example above, this gives

Units Conversion 14

You have: 12.28126 ft

You want: ft;in;1|8 in;

12 ft + 3 in + 3|8 in + 0.00096 * 1|8 in

in effect separating the integer and fractional parts of the coefficient for the last unit. If you
instead prefer to round the last coefficient to an integer you can do this with the ‘--round’
option. With the previous example, the result is

You have: 12.28126 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3|8 in (rounded down to nearest 1|8 in)

When you use the ‘-r’ or ‘--round’ option, duplicating the last unit has no effect and
hence adding an extra ‘;’ to a list of units does not change the result. When ‘--r’ is in
effect an extra ‘;’ can change the output in one situation: when it causes units to treat a
single unit as a list. The ‘--r’ option has no effect on regular unit conversions; if you want
to round a conversion to a regular unit, follow it with a ‘;’ and units will process it as a
list and display the rounded value for a single unit:

You have: 12.28126 ft

You want: in;

147 in (rounded down to nearest in)

Each unit that appears in the list must be conformable with the first unit on the list, and
of course the listed units must also be comformable with the You have unit that you enter.

You have: meter

You want: ft;kg

^

conformability error

ft = 0.3048 m

kg = 1 kg

You have: meter

You want: lb;oz

conformability error

1 m

0.45359237 kg

In the first case, units reports the disagreement between units appearing on the list. In
the second case, units reports disagreement between the unit you entered and the desired
conversion. This conformability error is based on the first unit on the unit list.

Other common candidates for conversion to sums of units are angles and time:

You have: 23.437754 deg

You want; deg;arcmin;arcsec

23 deg + 26 arcmin + 15.9144 arcsec

You have: 7.2319 hr

You want: hr;min;sec

7 hr + 13 min + 54.84 sec

In North America, recipes for cooking typically measure ingredients by volume, and use
units that are not always convenient multiples of each other. Suppose that you have a

Units Conversion 15

recipe for 6 and you wish to make a portion for 1. If the recipe calls for 2 1/2 cups of an
ingredient, you might wish to know the measurements in terms of measuring devices you
have available, you could use units and enter

You have: (2+1|2) cup / 6

You want: cup;1|2 cup;1|3 cup;1|4 cup;tbsp;tsp;1|2 tsp;1|4 tsp

1|3 cup + 1 tbsp + 1 tsp

By default, if a unit in a list begins with fraction of the form 1|x and its multiplier is
an integer, the fraction is given as the product of the multiplier and the numerator; for
example,

You have: 12.28125 ft

You want: ft;in;1|8 in;

12 ft + 3 in + 3|8 in

In many cases, such as the example above, this is what is wanted, but sometimes it is not.
For example, a cooking recipe for 6 might call for 5 1/4 cup of an ingredient, but you want
a portion for 2, and your 1-cup measure is not available; you might try

You have: (5+1|4) cup / 3

You want: 1|2 cup;1|3 cup;1|4 cup

3|2 cup + 1|4 cup

This result might be fine for a baker who has a 1 1/2-cup measure (and recognizes the
equivalence), but it may not be as useful to someone with more limited set of measures,
who does want to do additional calculations, and only wants to know “How many 1/2-
cup measures to I need to add?” After all, that’s what was actually asked. With the
‘--show-factor’ option, the factor will not be combined with a unity numerator, so that
you get

You have: (5+1|4) cup / 3

You want: 1|2 cup;1|3 cup;1|4 cup

3 * 1|2 cup + 1|4 cup

A user-specified fractional unit with a numerator other than 1 is never overridden, however—
if a unit list specifies ‘3|4 cup;1|2 cup’, a result equivalent to 1 1/2 cups will always be
shown as ‘2 * 3|4 cup’ whether or not the ‘--show-factor’ option is given.

Some applications for unit lists may be less obvious. Suppose that you have a postal
scale and wish to ensure that it’s accurate at 1 oz, but have only metric calibration weights.
You might try

You have: 1 oz

You want: 100 g;50 g; 20 g;10 g;5 g;2 g;1 g;

20 g + 5 g + 2 g + 1 g + 0.34952312 * 1 g

You might then place one each of the 20 g, 5 g, 2 g, and 1 g weights on the scale and hope
that it indicates close to

You have: 20 g + 5 g + 2 g + 1 g

You want: oz;

0.98767093 oz

Appending ‘;’ to ‘oz’ forces a one-line display that includes the unit; here the integer part
of the result is zero, so it is not displayed.

A unit list such as

Units Conversion 16

cup;1|2 cup;1|3 cup;1|4 cup;tbsp;tsp;1|2 tsp;1|4 tsp

can be tedious to enter. The units program provides shorthand names for some common
combinations:

hms hours, minutes, seconds
dms angle: degrees, minutes, seconds
time years, days, hours, minutes and seconds
usvol US cooking volume: cups and smaller

Using these shorthands, or unit list aliases, you can do the following conversions:

You have: anomalisticyear

You want: time

1 year + 25 min + 3.4653216 sec

You have: 1|6 cup

You want: usvol

2 tbsp + 2 tsp

You cannot combine a unit list alias with other units: it must appear alone at the ‘You
want:’ prompt.

You can display the definition of a unit list by pressing ENTER at the ‘You have:’
prompt:

You have: dms

Definition: unit list, deg;arcmin;arcsec

When you specify compact output with ‘--compact’, ‘--terse’ or ‘-t’ and perform con-
version to a unit list, units lists the conversion factors for each unit in the list, separated
by semicolons. Unlike the case of regular output, zeros are included in this output list:

You have: year

You want: day;min;sec

365 day + 348 min + 45.974678 sec

You have: liter

You want: cup;1|2 cup;1|4 cup;tbsp

4;0;0;3.6280454

8 Invoking units

You invoke units like this:

units [options] [from-unit [to-unit]]

If the from-unit and to-unit are omitted, then the program will use interactive prompts
to determine which conversions to perform. See Chapter 2 [Interactive Use], page 1. If
both from-unit and to-unit are given, units will print the result of that single conversion
and then exit. If only from-unit appears on the command line, units will display the
definition of that unit and exit. Units specified on the command line may need to be
quoted to protect them from shell interpretation and to group them into two arguments.
See Chapter 3 [Command Line Use], page 3.

The following options allow you to read in an alternative units file, check your units file,
or change the output format:

Units Conversion 17

-c

--check Check that all units and prefixes defined in the units data file reduce to primitive
units. Print a list of all units that cannot be reduced. Also display some other
diagnostics about suspicious definitions in the units data file. Only definitions
active in the current locale are checked. You should always run units with this
option after modifying a units data file.

--check-verbose

Like the ‘--check’ option, this option prints a list of units that cannot be
reduced. But to help find unit definitions that cause endless loops, it lists the
units as they are checked. If units hangs, then the last unit to be printed has
a bad definition. Only definitions active in the current locale are checked.

-o format

--output-format format

Use the specified format for numeric output; the format is a subset of that
for the printf function in the ANSI C standard. Only a numeric format (‘E’
or ‘e’ for scientific notation, ‘f’ for fixed-point decimal, or ‘G’ or ‘g’ to specify
the number of significant figures) is allowed. The default format is ‘%.8g’;
for greater precision, you could specify ‘-o %.15g’. See Chapter 10 [Numeric
Output Format], page 24, and the documentation for printf() for more detailed
descriptions of the format specification.

-e

--exponential

Set the numeric output format to exponential (i.e., scientific notation), like that
used in the Unix units program.

-f filename

--file filename

Instruct units to load the units file filename. You can specify up to 25 units
files on the command line. When you use this option, units will load only
the files you list on the command line; it will not load the standard file or your
personal units file unless you explicitly list them. If filename is the empty string
(‘-f ""’), the default units file (or that specified by UNITSFILE) will be loaded
in addition to any others specified with ‘-f’.

-h

--help Print out a summary of the options for units.

-m

--minus Causes ‘-’ to be interpreted as a subtraction operator. This is the default
behavior.

-p

--product

Causes ‘-’ to be interpreted as a multiplication operator when it has two
operands. It will act as a negation operator when it has only one operand:
‘(-3)’. By default ‘-’ is treated as a subtraction operator.

Units Conversion 18

--oldstar

Causes ‘*’ to have the old-style precedence, higher than the precedence of divi-
sion so that ‘1/2*3’ will equal ‘1/6’.

--newstar

Forces ‘*’ to have the new (default) precedence that follows the usual rules
of algebra: the precedence of ‘*’ is the same as the precedence of ‘/’, so that
‘1/2*3’ will equal ‘3/2’.

--compact

Give compact output featuring only the conversion factor. This turns off the
‘--verbose’ option.

-q

--quiet

--silent Suppress prompting of the user for units and the display of statistics about the
number of units loaded.

-n

--nolists

Disable conversion to unit lists.

-r

--round When converting to a combination of units given by a unit list, round the value
of the last unit in the list to the nearest integer.

-S

--show-factor

When converting to a combination of units specified in a list, always show a
non-unity factor before a unit that begins with a fraction with a unity denom-
inator. By default, if the unit in a list begins with fraction of the form ‘1|x’
and its multiplier is an integer other than 1, the fraction is given as the product
of the multiplier and the numerator (e.g., ‘3|8 in’ rather than ‘3 * 1|8 in’).
In some cases, this is not what is wanted; for example, the results for a cook-
ing recipe might show ‘3 * 1|2 cup’ as ‘3|2 cup’. With the ‘--show-factor’
option, a result equivalent to 1.5 cups will display as ‘3 * 1|2 cup’ rather than
‘3|2 cup’. A user-specified fractional unit with a numerator other than 1 is
never overridden, however—if a unit list specifies ‘3|4 cup;1|2 cup’, a result
equivalent to 1 1/2 cups will always be shown as ‘2 * 3|4 cup’ whether or not
the ‘--show-factor’ option is given.

-s

--strict Suppress conversion of units to their reciprocal units. For example, units will
normally convert hertz to seconds because these units are reciprocals of each
other. The strict option requires that units be strictly conformable to perform
a conversion, and will give an error if you attempt to convert hertz to seconds.

-1

--one-line

Give only one line of output (the forward conversion). Do not print the reverse
conversion. If a reciprocal conversion is performed then units will still print
the “reciprocal conversion” line.

Units Conversion 19

-t

--terse Give terse output when converting units. This option can be used when calling
units from another program so that the output is easy to parse. This option
has the combined effect of these options: ‘--strict’ ‘--quiet’ ‘--one-line’
‘--compact’.

-v

--verbose

Give slightly more verbose output when converting units. When combined with
the ‘-c’ option this gives the same effect as ‘--check-verbose’.

-V

--version

Print program version number, tell whether the readline library has been
included, and give the location of the default units data file.

-l locale

--locale locale

Force a specified locale such as ‘en_GB’ to get British definitions by default. This
overrides the locale determined from system settings or environment variables.
See Section 11.1 [Locale], page 24, for a description of locale format.

9 Adding Your Own Definitions

9.1 Units Data Files

The units and prefixes that units can convert are defined in the units data file, typically
‘/usr/share/units/definitions.units’. Although you can extend or modify this data
file if you have appropriate user privileges, it’s usually better to put extensions in separate
files so that the definitions will be preserved when you update units.

You can include additional data files in the units database using the ‘!include’ command
in the standard units data file. For example

!include /usr/local/share/units/local.units

might be appropriate for a site-wide supplemental data file. The location of the ‘!include’
statement in the standard units data file is important; later definitions replace earlier ones,
so any definitions in an included file will override definitions before the ‘!include’ state-
ment in the standard units data file. With normal invocation, no warning is given about
redefinitions; to ensure that you don’t have an unintended redefinition, run ‘units -c’ after
making changes to any units data file.

If you want to add your own units in addition to or in place of standard or site-wide sup-
plemental units data files, you can include them in the ‘.units’ file in your home directory.
If this file exists it is read after the standard units data file, so that any definitions in this
file will replace definitions of the same units in the standard data file or in files included
from the standard data file. This file will not be read if any units files are specified on the
command line. (Under Windows the personal units file is named ‘unitdef.units’.)

The units program first tries to determine your home directory from the HOME envi-
ronment variable. On systems running Microsoft Windows, if HOME does not exist, units

Units Conversion 20

attempts to find your home directory from HOMEDRIVE and HOMEPATH. Running units -V

will display the location and name of your personal units file.

You can specify an arbitrary file as your personal units data file with the MYUNITSFILE

environment variable; if this variable exists, its value is used without searching your home
directory.

9.2 Defining New Units and Prefixes

A unit is specified on a single line by giving its name and an equivalence. Comments start
with a ‘#’ character, which can appear anywhere in a line. The backslash character (‘\’) acts
as a continuation character if it appears as the last character on a line, making it possible
to spread definitions out over several lines if desired. A file can be included by giving the
command ‘!include’ followed by the file’s name. The ‘!’ must be the first character on the
line. The file will be sought in the same directory as the parent file unless you give a full
path. The name of the file to be included cannot contain the comment character ‘#’.

Unit names must not contain any of the operator characters ‘+’, ‘-’, ‘*’, ‘/’, ‘|’, ‘^’, ‘;’,
‘~’, the comment character ‘#’, or parentheses. They cannot begin or end with an underscore
(‘_’), a comma (‘,’) or a decimal point (‘.’). Names cannot begin with a digit, and if a
name ends in a digit other than zero, the digit must be preceded by a string beginning with
an underscore, and afterwards consisting only of digits, decimal points, or commas. For
example, ‘foo_2’, ‘foo_2,1’, or ‘foo_3.14’ would be valid names but ‘foo2’ or ‘foo_a2’
would be invalid. You could define nitrous oxide as

N2O nitrogen 2 + oxygen

but would need to define nitrogen dioxide as

NO_2 nitrogen + oxygen 2

Be careful to define new units in terms of old ones so that a reduction leads to the primitive
units, which are marked with ‘!’ characters. Dimensionless units are indicated by using the
string ‘!dimensionless’ for the unit definition.

When adding new units, be sure to use the ‘-c’ option to check that the new units reduce
properly. If you create a loop in the units definitions, then units will hang when invoked
with the ‘-c’ option. You will need to use the ‘--check-verbose’ option, which prints out
each unit as it is checked. The program will still hang, but the last unit printed will be the
unit that caused the infinite loop.

If you define any units that contain ‘+’ characters, carefully check them because the
‘-c’ option will not catch non-conformable sums. Be careful with the ‘-’ operator as well.
When used as a binary operator, the ‘-’ character can perform addition or multiplication
depending on the options used to invoke units. To ensure consistent behavior use ‘-’ only
as a unary negation operator when writing units definitions. To multiply two units leave a
space or use the ‘*’ operator with care, recalling that it has two possible precedence values
and may require parentheses to ensure consistent behavior. To compute the difference of
‘foo’ and ‘bar’ write ‘foo+(-bar)’ or even ‘foo+-bar’.

Here is an example of a short data file that defines some basic units:

Units Conversion 21

m ! # The meter is a primitive unit

sec ! # The second is a primitive unit

rad !dimensionless # A dimensionless primitive unit

micro- 1e-6 # Define a prefix

minute 60 sec # A minute is 60 seconds

hour 60 min # An hour is 60 minutes

inch 0.0254 m # Inch defined in terms of meters

ft 12 inches # The foot defined in terms of inches

mile 5280 ft # And the mile

A unit that ends with a ‘-’ character is a prefix. If a prefix definition contains any ‘/’ charac-
ters, be sure they are protected by parentheses. If you define ‘half- 1/2’ then ‘halfmeter’
would be equivalent to ‘1 / (2 meter)’.

9.3 Defining Nonlinear Units

Some unit conversions of interest are nonlinear; for example, temperature conversions be-
tween the Fahrenheit and Celsius scales cannot be done by simply multiplying by conversion
factors.

When you give a linear unit definition such as ‘inch 2.54 cm’ you are providing informa-
tion that units uses to convert values in inches into primitive units of meters. For nonlinear
units, you give a functional definition that provides the same information.

Nonlinear units are represented using a functional notation. It is best to regard this
notation not as a function call but as a way of adding units to a number, much the same
way that writing a linear unit name after a number adds units to that number. Internally,
nonlinear units are defined by a pair of functions that convert to and from linear units in
the data file, so that an eventual conversion to primitive units is possible.

Here is an example nonlinear unit definition:

tempF(x) units=[1;K] (x+(-32)) degF + stdtemp ; \

(tempF+(-stdtemp))/degF + 32

A nonlinear unit definition comprises a unit name, a dummy parameter name, two functions,
and two corresponding units. The functions tell units how to convert to and from the new
unit. In order to produce valid results, the arguments of these functions need to have the
correct dimensions. To facilitate error checking, you may optionally indicate units for these
arguments.

The definition begins with the unit name followed immediately (with no spaces) by a ‘(’
character. In parentheses is the name of the parameter. Next is an optional specification
of the units required by the functions in this definition. In the example above, the ‘tempF’
function requires an input argument conformable with ‘1’. For normal nonlinear units
definitions the forward function will always take a dimensionless argument. The inverse
function requires an input argument conformable with ‘K’. In general the inverse function
will need units that match the quantity measured by your nonlinear unit. The purpose of
the expression in brackets to enable units to perform error checking on function arguments,
and also to assign units to range and domain specifications, which are described later.

Next the function definitions appear. In the example above, the ‘tempF’ function is
defined by

Units Conversion 22

tempF(x) = (x+(-32)) degF + stdtemp

This gives a rule for converting ‘x’ in the units ‘tempF’ to linear units of absolute tempera-
ture, which makes it possible to convert from tempF to other units.

In order to make conversions to Fahrenheit possible, you must give a rule for the inverse
conversions. The inverse will be ‘x(tempF)’ and its definition appears after a ‘;’ character.
In our example, the inverse is

x(tempF) = (tempF+(-stdtemp))/degF + 32

This inverse definition takes an absolute temperature as its argument and converts it to the
Fahrenheit temperature. The inverse can be omitted by leaving out the ‘;’ character, but
then conversions to the unit will be impossible. If the inverse is omitted then the ‘--check’
option will display a warning. It is up to you to calculate and enter the correct inverse
function to obtain proper conversions. The ‘--check’ option tests the inverse at one point
and prints an error if it is not valid there, but this is not a guarantee that your inverse is
correct.

If you wish to make synonyms for nonlinear units, you still need to define both the
forward and inverse functions. Inverse functions can be obtained using the ‘~’ operator. So
to create a synonym for ‘tempF’ you could write

fahrenheit(x) units=[1;K] tempF(x); ~tempF(fahrenheit)

You may define a function whose range and domain do not cover all of the real numbers.
In this case units can handle errors better if you specify an appropriate range and domain.
You specify the range and domain as shown below.

baume(d) units=[1;g/cm^3] domain=[0,130.5] range=[1,10] \

(145/(145-d)) g/cm^3 ; (baume+-g/cm^3) 145 / baume

In this example the domain is specified after the ‘domain=’ with the endpoints given in
brackets. One of the end points can be omitted to get an interval that goes to infinity. So
the range could be specified as nonnegative by writing ‘range=[0,]’. Both the range and
domain are optional and can appear independently and in any order along with the ‘units’
specification. The values in the range and domain are attached to the units given in the
‘units’ specification. If you don’t specify the units then the parameter inputs are reduced
to primitive units for the numeric comparison to the values you give in the range or domain.
In this case you should only use ‘range’ or ‘domain’ if the endpoints are zero and infinity.

Specifying the range and domain allows units to perform better error checking and give
more helpful error messages when you invoke nonlinear units conversions outside of their
bounds. It also enables the ‘-c’ option to find a point in the domain to use for its point
check of your inverse definition.

You may occasionally wish to define a function that operates on units. This can be done
using a nonlinear unit definition. For example, the definition below provides conversion
between radius and the area of a circle. This definition requires a length as input and
produces an area as output, as indicated by the ‘units=’ specification. Specifying the range
as the nonnegative numbers can prevent cryptic error messages.

circlearea(r) units=[m;m^2] range=[0,] pi r^2 ; sqrt(circlearea/pi)

Sometimes you may be interested in a piecewise linear unit such as many wire gauges.
Piecewise linear units can be defined by specifying conversions to linear units on a list of

Units Conversion 23

points. Conversion at other points will be done by linear interpolation. A partial definition
of zinc gauge is

zincgauge[in] 1 0.002, 10 0.02, 15 0.04, 19 0.06, 23 0.1

In this example, ‘zincgauge’ is the name of the piecewise linear unit. The definition of such
a unit is indicated by the embedded ‘[’ character. After the bracket, you should indicate
the units to be attached to the numbers in the table. No spaces can appear before the ‘]’
character, so a definition like ‘foo[kg meters]’ is illegal; instead write ‘foo[kg*meters]’.
The definition of the unit consists of a list of pairs optionally separated by commas. This
list defines a function for converting from the piecewise linear unit to linear units. The first
item in each pair is the function argument; the second item is the value of the function at
that argument (in the units specified in brackets). In this example, we define ‘zincgauge’
at five points. For example, we set ‘zincgauge(1)’ equal to ‘0.002 in’. Definitions like
this may be more readable if written using continuation characters as

zincgauge[in] \

1 0.002 \

10 0.02 \

15 0.04 \

19 0.06 \

23 0.1

With the preceding definition, the following conversion can be performed:

You have: zincgauge(10)

You want: in

* 0.02

/ 50

You have: .01 inch

You want: zincgauge

5

If you define a piecewise linear unit that is not strictly monotonic, then the inverse will not
be well defined. If the inverse is requested for such a unit, units will return the smallest
inverse. The ‘--check’ option will print a warning if a non-monotonic piecewise linear unit
is encountered.

9.4 Defining Unit List Aliases

Unit list aliases are treated differently from unit definitions, because they are a data entry
shorthand rather than a true definition for a new unit. A unit list alias definition begins
with ‘!unitlist’ and includes the alias and the definition; for example, the aliases included
in the standard units data file are

!unitlist hms hr;min;sec

!unitlist time year;day;hr;min;sec

!unitlist dms deg;arcmin;arcsec

!unitlist ftin ft;in;1|8 in

!unitlist usvol cup;3|4 cup;2|3 cup;1|2 cup;1|3 cup;1|4 cup;\

tbsp;tsp;1|2 tsp;1|4 tsp;1|8 tsp

Unit list aliases are only for unit lists, so the definition must include a ‘;’. Unit list aliases
can never be combined with units or other unit list aliases, so the definition of ‘time’ shown

Units Conversion 24

above could not have been shortened to ‘year;day;hms’. As usual, be sure to run units

--check to ensure that the units listed in unit list aliases are conformable.

10 Numeric Output Format

By default, results of conversions are shown to eight significant figures; this can be changed
with the ‘--exponential’ and ‘--output-format’ options. The former sets an exponential
format (i.e., scientific notation) like that used in the original Unix units program; the latter
allows the format to be given as that of the printf function in the ANSI C standard.

The format recognized with the ‘--output-format’ option is a subset of that for printf().
Only a floating-point format of the form %[flag][width][.precision]type is allowed: it must
begin with ‘%’, and must end with a floating-point type specifier (‘E’ or ‘e’ for scientific
notation, ‘f’ for fixed-point decimal, or ‘G’ or ‘g’ to specify the number of significant figures).
The format specification may include one optional flag (‘+’, ‘-’, ‘#’, or a space), followed
by an optional value for the minimum field width, and an optional precision specification
that begins with a period (e.g., ‘.6’). In addition to the digits, the field width includes the
decimal point, the exponent, and the sign if any of these are shown. A width specification
is typically used with fixed-point decimal to have columns of numbers align at the decimal
point; it normally is not useful with units. Non-floating-point type specifiers make no sense
for units, and are forbidden.

The default format is ‘%.8g’; for greater precision, you could specify ‘-o %.15g’. The
‘G’ and ‘g’ formats use exponential format whenever the exponent would be less than −5,
so the value 0.000013 displays as ‘1.3e-005’. If you prefer fixed-point display, you might
specify ‘-o %.8f’; however, very small numbers may display very few significant figures, and
for very small numbers, may show nothing but zeros.

See the documentation for printf() for more detailed descriptions of the format specifi-
cation.

11 Localization

Some units have different values in different locations. The localization feature accommo-
dates this by allowing a units data file to specify definitions that depend on the user’s
locale.

11.1 Locale

A locale is a subset of a user’s environment that indicates the user’s language and country,
and some attendant preferences, such as the formatting of dates. The units program
attempts to determine the locale from the POSIX setlocale function; if this cannot be done,
units examines the environment variables LC_CTYPE and LANG. On POSIX systems, a
locale is of the form language_country, where language is the two-character code from ISO
639-1 and country is the two-character code from ISO 3166-1; language is lower case and
country is upper case. For example, the POSIX locale for the United Kingdom is en_GB.

On systems running Microsoft Windows, the value returned by setlocale() is different
from that on POSIX systems; units attempts to map the Windows value to a POSIX

Units Conversion 25

value by means of a table in the file ‘locale.map’ in the same directory, typically
‘/usr/local/share/units’, as the default units data files. The file includes entries
for many combinations of language and country, and can be extended to include other
combinations. The ‘locale.map’ comprises two tab-separated columns; each entry is of
the form

Windows-locale POSIX-locale

where POSIX-locale is as described above, and Windows-locale typically spells out both
the language and country. For example, the entry for the United States is

English_United States en_US

You can force units to run in a desired locale by using the ‘-l’ option.

In order to create unit definitions for a particular locale you begin a block of definitions
in a unit datafile with ‘!locale’ followed by a locale name. The ‘!’ must be the first
character on the line. The units program reads the following definitions only if the current
locale matches. You end the block of localized units with ‘!endlocale’. Here is an example,
which defines the British gallon.

!locale en_GB

gallon 4.54609 liter

!endlocale

11.2 Additional Localization

Sometimes the locale isn’t sufficient to determine unit preferences. There could be regional
preferences, or a company could have specific preferences. Though probably uncommon,
such differences could arise with the choice of English customary units outside of English-
speaking countries. To address this, units allows specifying definitions that depend on
environment variable settings. The environment variables can be controled based on the
current locale, or the user can set them to force a particular group of definitions.

A conditional block of definitions in a units data file begins with either ‘!var’ or
‘!varnot’ following by an environment variable name and then a space separated list of
values. The leading ‘!’ must appear in the first column of a units data file, and the con-
ditional block is terminated by ‘!endvar’. Definitions in blocks beginning with ‘!var’ are
executed only if the environment variable is exactly equal to one of the listed values. Def-
initions in blocks beginning with ‘!varnot’ are executed only if the environment variable
does not equal any of the list values.

The inch has long been a customary measure of length in many places. The word comes
from the latin uncia meaning “one twelfth,” referring to its relationship with the foot. By
the 20th century, the inch was officially defined in English-speaking countries relative to
the yard, but until 1959, the yard differed slightly among those countries. In France the
customary inch, which was displaced in 1799 by the meter, had a different length based on
a french foot. These customary definitions could be accomodated as follows:

!var INCH_UNIT usa

yard 3600|3937 m

!endvar

!var INCH_UNIT canada

yard 0.9144 meter

!endvar

Units Conversion 26

!var INCH_UNIT uk

yard 0.91439841 meter

!endvar

!var INCH_UNIT canada uk usa

foot 1|3 yard

inch 1|12 foot

!endvar

!var INCH_UNIT france

foot 144|443.296 m

inch 1|12 foot

line 1|12 inch

!endvar

!varnot INCH_UNIT usa uk france canada

!message Unknown value for INCH_UNIT

!endvar

When units reads the above definitions it will check the environment variable INCH_UNIT

and load only the definitions for the appropriate section. If INCH_UNIT is unset or is not set
to one of the four values listed then units will run the last block. In this case that block
uses the ‘!message’ command to display a warning message. Alternatively that block could
set default values.

In order to create default values that are overridden by user settings the data file can
use the ‘!set’ command, which sets an environment variable only if it is not already set ;
these settings are only for the current units invocation and do not persist. So if the
example above were preceded by ‘!set INCH_UNIT france’ then this would make ‘france’
the default value for INCH_UNIT. If the user had set the variable into the environment before
invoking units, then units would use the user’s value.

To link these settings to the user’s locale you combine the ‘!set’ command with the
‘!locale’ command. If you wanted to combine the above example with suitable locales you
could do by preceding the above definition with the following:

!locale en_US

!set INCH_UNIT usa

!endlocale

!locale en_GB

!set INCH_UNIT uk

!endlocale

!locale en_CA

!set INCH_UNIT canada

!endlocale

!locale fr_FR

!set INCH_UNIT france

!endlocale

!set INCH_UNIT france

These definitions set the overall default for INCH_UNIT to ‘france’ and set default values
for four locales appropriately. The overall default setting comes last so that it only applies
when INCH_UNIT was not set by one of the other commands or by the user.

Units Conversion 27

If the variable given after ‘!var’ or ‘!varnot’ is undefined then units prints an error
message and ignores the definitions that follow. Use ‘!set’ to create defaults to prevent
this situation from arising. The ‘-c’ option only checks the definitions that are active for
the current environment and locale, so when adding new definitions take care to check that
all cases give rise to a well defined set of definitions.

12 Environment Variables

The units program uses the following environment variables:

HOME Specifies the location of your home directory; it is used by units to find a per-
sonal units data file ‘.units’. On systems running Microsoft Windows, units
tries to determine your home directory from the HOMEDRIVE and HOMEPATH en-
vironment variables if HOME does not exist.

LC_CTYPE, LANG

Checked to determine the locale if units cannot obtain it from the operating
system. Sections of the standard units data file are specific to certain locales.

MYUNITSFILE

Specifies your personal units data file. If this variable exists, units uses its
value rather than searching your home directory for ‘.units’. The personal
units file will not be loaded if any data files are given using the ‘-f’ option.

PAGER Specifies the pager to use for help and for displaying the conformable units.
The help function browses the units database and calls the pager using the
‘+n’n syntax for specifying a line number. The default pager is more; PAGER can
be used to specify alternatives such as less, pg, emacs, or vi.

UNITS_ENGLISH

Set to either ‘US’ or ‘GB’ to choose United States or British volume definitions,
overriding the default from your locale.

UNITSFILE

Specifies the units data file to use (instead of the default). You can only specify
a single units data file using this environment variable. If units data files are
given using the ‘-f’ option, the file specified by UNITSFILE will be not be loaded
unless the ‘-f’ option is given with the empty string (‘units -f ""’).

13 Unicode Support

The standard units data file is written in Unicode using the UTF-8 encoding. Portions of
the file that are not plain ASCII begin with ‘!utf8’ and end with ‘!endutf8’. As usual,
the ‘!’ must appear as the first character on the line. If a line of a data file contains byte
sequences that are invalid UTF-8 or non-printing UTF-8 then units ignores the entire line.

When units runs it checks the locale to determine the character set. If UTF-8 is listed,
then units reads the utf8 definitions. If any other character set is in use, then units works
in plain ASCII without support for extended characters.

Units Conversion 28

14 Readline Support

If the readline package has been compiled in, then when units is used interactively,
numerous command line editing features are available. To check if your version of units
includes readline, invoke the program with the ‘--version’ option.

For complete information about readline, consult the documentation for the readline
package. Without any configuration, units will allow editing in the style of emacs. Of
particular use with units are the completion commands.

If you type a few characters and then hit ESC followed by ? then units will display a
list of all the units that start with the characters typed. For example, if you type metr and
then request completion, you will see something like this:

You have: metr

metre metriccup metrichorsepower metrictenth

metretes metricfifth metricounce metricton

metriccarat metricgrain metricquart metricyarncount

You have: metr

If there is a unique way to complete a unitname, you can hit the TAB key and units

will provide the rest of the unit name. If units beeps, it means that there is no unique
completion. Pressing the TAB key a second time will print the list of all completions.

15 Updating Currency Exchange Rates

The units program includes currency exchange rates and prices for some precious
metals in the database. Of course, these values change over time, sometimes very
rapidly, and units cannot provide real time values. To update the exchange rates
run the units_cur, which rewrites the files containing the currency rates, typically
‘/usr/local/share/units/currency.units’. This program must be run with suitable
permissions to write the file. To keep the rates updated automatically, it could be run by
a cron job on a Unix-like system, or a similar scheduling program on a different system.
Currency exchange rates are taken from Time Genie (http://www.timegenie.com) and
precious metals pricing from Packetizer (www.packetizer.com). These sites update once
per day, so there is no benefit in running the update script more often than daily. You can
run units_cur with a filename specified on the command line and it will write the data to
that file. If you give ‘-’ for the file it will write to standard output.

16 Database Command Syntax

unit definition

Define a regular unit.

prefix- definition

Define a prefix.

http://www.timegenie.com
www.packetizer.com

Units Conversion 29

funcname(var) units=[in-units,out-units] domain=[x1,x2] range=[y1,y2]

definition(var) ; inverse(funcname)

Define a nonlinear unit or unit function. The three optional keywords units=,
range= and domain= can appear in any order. The definition of the inverse is
optional.

tabname[out-units] pair-list

Define a piecewise linear unit. The pair list gives the points on the table listed
in ascending order.

!endlocale

End a block of definitions beginning with ‘!locale’

!endutf8 End a block of definitions begun with ‘!utf8’

!endvar End a block of definitions begun with ‘!var’ or ‘!varnot’

!include file

Include the specified file.

!locale value

Load the following definitions only of the locale is set to value.

!message text

Display text when the database is read in, unless the quiet option (‘-q’) is
enabled.

!set variable value

Sets the environment variable, variable, to the specified value only if it is not
already set.

!unitlist alias definition

Define a unit list alias.

!utf8 Load the following definitions only if units is running with UTF-8 enabled.

!var variable value-list

Load the following definitions only if the environment variable, variable is set
to one of the values listed on the space separated value list. If variable is not
set then units prints an error message and ignores the following definitions.

!varnot variable value-list

Load the following definitions only if the environment variable, variable is not
set to one of the values listed on the space separated value list. If variable is not
set then units prints an error message and ignores the following definitions.

Units Conversion 30

Index

!
‘!’ to indicate primitive units 20
‘!endlocale’ . 24
‘!endutf8’ . 27
‘!include’ . 19
‘!locale’ . 24
‘!unitlist’ . 23
‘!utf8’ . 27

*
‘*’ operator . 6
‘**’ operator . 6

+
‘+’ operator . 7

-
‘-’ as multiplication operator 10
‘-’ as subtraction operator . 7
--check (option for units) . 17
--check-verbose (option for units) 17
--compact (option for units) 18
--file (option for units) . 17
--help (option for units) . 17
--locale (option for units) 19
--minus (option for units) . 17
--newstar (option for units) 18
--oldstar (option for units) 18
--one-line (option for units) 18
--output-format (option for units) 17
--product (option for units) 17
--quiet (option for units) . 18
--silent (option for units) 18
--strict (option for units) 18
--terse (option for units) . 19
--verbose (option for units) 19
--verbose-check (option for units) 17
--version (option for units) 19
-1 (option for units) . 18
-c (option for units) . 17
-f (option for units) . 17
-h (option for units) . 17
-l (option for units) . 19
-m (option for units) . 17
-o (option for units) . 17
-p (option for units) . 17
-q (option for units) . 18
-s (option for units) . 18
-t (option for units) . 19
-v (option for units) . 19
-V (option for units) . 19

?
‘?’ for unit completion with readline 28
‘?’ to show conformable units 3

|
‘|’ operator . 7

A
abrasive grit size . 12
addition of units . 7
additional units data files . 19

B
backwards compatibility . 10
British Imperial measure . 4

C
circle, area of . 12
command, ‘!’ to indicate primitive units 20
command, ‘!endlocale’ . 24
command, ‘!endutf8’ . 27
command, ‘!endvar’ . 24
command, ‘!include’ . 19
command, ‘!locale’ . 24
command, ‘!message’ . 24
command, ‘!set’ . 24
command, ‘!unitlist’ . 23
command, ‘!utf8’ . 27
command, ‘!var’ . 24
command, ‘!varnot’ . 24
command-line options . 16
command-line unit conversion 3
commands in units database 28
compatibility . 10
compatibility with earlier versions 10
completion, unit, using ‘?’ (readline only) 28
conformable units, ‘?’ to show 3
currency, updating . 28

D
Darcy–Weisbach equation . 9
data files, additional . 19
database syntax summary . 28
defining nonlinear units . 21
defining prefixes . 20
defining units . 20
defining units with ‘-’ . 10
differences of units . 7
dimensionless units . 3

Units Conversion 31

dimensionless units, defining 20
division of numbers . 7
division of units . 6

E
environment dependent definitions 24
environment variable, HOME 27
environment variable, LANG 27
environment variable, LC CTYPE 27
environment variable, MYUNITSFILE 20, 27
environment variable, PAGER 27
environment variable, UNITS ENGLISH 27
environment variable, UNITSFILE 27
environment variables . 27
exchange rates, updating . 28
exponent operator . 6

F
fractions, numerical . 7
functions of units . 22
functions, built in . 8

H
help . 3, 27
HOME environment variable 27
hyphen as multiplication operator 10

I
Imperial measure . 4
include files . 20
including additional units data files 19
incompatible units . 2
interactive use . 1
international mile . 5
international yard . 5
invoking units . 16

L
LANG environment variable 27
LC CTYPE environment variable 27
length measure, English customary 5
length measure, UK . 5
linear interpolation . 22
locale . 24
‘locale.map’ . 24
localization . 24

M
measure, Imperial . 4
mile, international . 5
minus (‘-’) operator, subtraction 7
multiplication of units . 6

multiplication, hyphen . 10
MYUNITSFILE environment variable 20, 27

N
non-conformable units . 2
non-interactive unit conversion 3
nonlinear unit conversions 10, 21
nonlinear units, defining . 21
nonlinear units, other . 11
numbers as units . 8
numeric output format . 24
numerical fractions . 7

O
operator precedence . 6
operator, (‘**’) . 6
operator, caret (‘^’) . 6
operator, hyphen (‘-’) as multiplication 10
operator, hyphen (‘-’) as subtraction 7
operator, minus (‘-’) . 7
operator, ‘per’ . 6
operator, plus (‘+’) . 7
operator, slash (‘/’) . 6
operator, solidus (‘/’) . 6
operator, space . 6
operator, star (‘*’) . 6
operator, vertical bar (‘|’) . 7
operators . 6
output format . 24

P
PAGER environment variable 27
parentheses . 6, 7, 8, 9, 20, 21
‘per’ operator . 6
personal units data file . 19
piecewise linear units . 22
plus (‘+’) operator . 7
powers . 6
prefixes . 5
prefixes and exponents . 6
prefixes, definition of . 20
primitive units . 20
products of units . 6

Q
quotients of units . 6

R
readline, use with units . 28
reciprocal conversion . 2
roots . 9

Units Conversion 32

S
setlocale function . 24
slash (‘/’) operator . 6
solidus (‘/’) operator . 6
sphere, volume of . 12
square roots . 9
star (‘*’) operator . 6
State Plane Coordinate System, US 5
strict conversion . 2
subtraction of units . 7
sums and differences of units . 7
sums of units . 7, 12
survey foot, US . 5
survey measure, US . 5
survey mile, US . 5
syntax of units database . 28

T
temperature conversions . 11

U
Unicode support . 27
unit completion using ‘?’ (readline only) 28
unit definitions . 4
unit expressions . 6
unit expressions, complicated 9
unit list aliases, defining . 23
unit lists . 12
unit name completion . 28
units data file, personal . 19

units data files, additional . 19
units definitions, adding . 20
units definitions, changing . 20
units functions . 22
units quotients . 6
units, definition of . 20
units, lookup method . 4
units, piecewise linear . 22
units, primitive . 20
units, sums and differences . 7
units, sums of . 12
UNITS ENGLISH environment variable 27
UNITSFILE environment variable 27
US State Plane Coordinate System 5
US survey foot . 5
US survey measure . 5
US survey mile . 5
UTF-8 . 27

V
verbose output . 2
vertical bar (‘|’) operator . 7
volume measure, English customary 5

W
wire gauge . 12

Y
yard, international . 5

Units Conversion i

Table of Contents

Units Conversion . 1

1 Overview of units . 1

2 Interacting with units . 1

3 Using units Non-Interactively 3

4 Unit Definitions . 4
4.1 English Customary Units . 5

5 Unit Expressions . 6
5.1 Operators . 6
5.2 Sums and Differences of Units . 7
5.3 Numbers as Units . 8
5.4 Built-in Functions . 8
5.5 Complicated Unit Expressions . 9
5.6 Backwards Compatibility: ‘*’ and ‘-’ . 10

6 Nonlinear Unit Conversions 10
6.1 Temperature Conversions . 11
6.2 Other Nonlinear Units . 11

7 Unit Lists: Conversion to Sums of Units 12

8 Invoking units . 16

9 Adding Your Own Definitions 19
9.1 Units Data Files . 19
9.2 Defining New Units and Prefixes . 20
9.3 Defining Nonlinear Units . 21
9.4 Defining Unit List Aliases . 23

10 Numeric Output Format . 24

11 Localization . 24
11.1 Locale . 24
11.2 Additional Localization . 25

Units Conversion ii

12 Environment Variables . 27

13 Unicode Support . 27

14 Readline Support . 28

15 Updating Currency Exchange Rates 28

16 Database Command Syntax 28

Index . 30

	Units Conversion
	Overview of units
	Interacting with units
	Using units Non-Interactively
	Unit Definitions
	English Customary Units

	Unit Expressions
	Operators
	Sums and Differences of Units
	Numbers as Units
	Built-in Functions
	Complicated Unit Expressions
	Backwards Compatibility: * and -

	Nonlinear Unit Conversions
	Temperature Conversions
	Other Nonlinear Units

	Unit Lists: Conversion to Sums of Units
	Invoking units
	Adding Your Own Definitions
	Units Data Files
	Defining New Units and Prefixes
	Defining Nonlinear Units
	Defining Unit List Aliases

	Numeric Output Format
	Localization
	Locale
	Additional Localization

	Environment Variables
	Unicode Support
	Readline Support
	Updating Currency Exchange Rates
	Database Command Syntax
	Index

